Buruli ulcer (BU) is an emerging, but neglected tropical disease, where there has been a reported association with disturbed aquatic habitats and proposed aquatic macroinvertebrate vectors such as biting Hemiptera. An initial step in understanding the potential role of macroinvertebrates in the ecology of BU is to better understand the entire community, not just one or two taxa, in relation to the pathogen, Mycobacterium ulcerans, at a large spatial scale. For the first time at a country-wide scale this research documents that M. ulcerans was frequently detected from environmental samples taken from BU endemic regions, but was not present in 30 waterbodies of a non-endemic region. There were significant differences in macroinvertebrate community structure and identified potential indicator taxa in relation to pathogen presence. These results suggest that specific macroinvertebrate taxa or functional metrics may potentially be used as aquatic biological indicators of M. ulcerans. Developing ecological indicators of this pathogen is a first step for understanding the disease ecology of BU and should assist future studies of transmission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10393-013-0886-7 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
South African Institute for Aquatic Biodiversity, Makhanda, 6140, South Africa.
Riverine physical and chemical characteristics are influencing ecosystem integrity while shaping and impacting species richness and diversity. Changes in these factors could potentially influence community structuring through competition, predation and localised species extinctions. In this study, eight sampling sites over multiple seasons were assessed along the streams draining the City of Nelspruit, South Africa, to examine river health based on water and sediment quality, while using macroinvertebrates as bioindicators for pollution.
View Article and Find Full Text PDFEcol Evol
December 2024
Platypus Conservation Initiative, Centre for Ecosystem Science, School of Biological, Earth & Environmental Sciences University of New South Wales Sydney New South Wales Australia.
Platypuses are a unique freshwater mammal native to eastern Australia. They are semi-aquatic, predominantly nocturnal, and nest in burrows dug into the banks of waterbodies. Quantifying nesting burrow characteristics is challenging due to the species' cryptic nature.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, the Netherlands.
Increased pharmaceutical usage has led to their widespread presence in aquatic environments, resulting in concerns regarding their potential environmental impacts. Antidepressants, particularly selective serotonin reuptake inhibitors (SSRIs) like citalopram, are frequently detected in European surface waters. Acute laboratory studies have demonstrated that citalopram can inhibit algal growth, immobilise Daphnia magna, and may result in foot detachment (i.
View Article and Find Full Text PDFPeerJ
December 2024
cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
The lack of reliable data on length-mass relationships, essential to obtain accurate biomass estimates, limits our ability to easily assess secondary production by aquatic invertebrates. In the absence of published equations from similar habitat conditions, authors often borrow equations developed in geographic regions with different climate conditions, which may bias biomass estimates. A literature overview of published size-mass relationships for Portugal and Sweden highlights the need for further data within these biogeographic regions.
View Article and Find Full Text PDFSci Total Environ
December 2024
Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway; Department of Ecoscience, Aarhus University, DK-8000 Aarhus C, Denmark. Electronic address:
Human activities present significant threats to tropical freshwater ecosystems, notably in many global biodiversity hotspots, threats that are further increased by inadequate taxonomic knowledge and the lack of appropriate biomonitoring tools. This study integrates globally validated biomonitoring approaches with DNA-based identification methods to create a macroinvertebrate-based tool for diagnosing ecosystem health and assessing the biodiversity of tropical river ecosystems in Myanmar (Indo-Burma bioregion). To evaluate river site degradation, comprehensive data on water and habitat quality, as well as land use information, were collected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!