Simultaneous EEG-fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem.

J Neurosci

Department of Biomedical Engineering, Columbia University, New York, New York 10027, Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin 53705, and Medical University of South Carolina, Charleston, South Carolina 29425.

Published: December 2013

Cortical and subcortical networks have been identified that are commonly associated with attention and task engagement, along with theories regarding their functional interaction. However, a link between these systems has not yet been demonstrated in healthy humans, primarily because of data acquisition and analysis limitations. We recorded simultaneous EEG-fMRI while subjects performed auditory and visual oddball tasks and used these data to investigate the BOLD correlates of single-trial EEG variability at latencies spanning the trial. We focused on variability along task-relevant dimensions in the EEG for identical stimuli and then combined auditory and visual data at the subject level to spatially and temporally localize brain regions involved in endogenous attentional modulations. Specifically, we found that anterior cingulate cortex (ACC) correlates strongly with both early and late EEG components, whereas brainstem, right middle frontal gyrus (rMFG), and right orbitofrontal cortex (rOFC) correlate significantly only with late components. By orthogonalizing with respect to event-related activity, we found that variability in insula and temporoparietal junction is reflected in reaction time variability, rOFC and brainstem correlate with residual EEG variability, and ACC and rMFG are significantly correlated with both. To investigate interactions between these correlates of temporally specific EEG variability, we performed dynamic causal modeling (DCM) on the fMRI data. We found strong evidence for reciprocal effective connections between the brainstem and cortical regions. Our results support the adaptive gain theory of locus ceruleus-norepinephrine (LC-NE) function and the proposed functional relationship between the LC-NE system, right-hemisphere ventral attention network, and P300 EEG response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3850042PMC
http://dx.doi.org/10.1523/JNEUROSCI.2649-13.2013DOI Listing

Publication Analysis

Top Keywords

eeg variability
12
simultaneous eeg-fmri
8
brainstem cortical
8
auditory visual
8
eeg
6
variability
6
eeg-fmri reveals
4
reveals temporal
4
temporal evolution
4
evolution coupling
4

Similar Publications

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with an unclear pathogenesis to date. Neurofeedback (NFB) had shown therapeutic effects in patients with ASD. In this study,we analyzed the brain functional networks of children with ASD and investigated the impact of NFB targeting the beta rhythm training on these networks.

View Article and Find Full Text PDF

Memory load influences our preparedness to act on visual representations in working memory without affecting their accessibility.

Prog Neurobiol

January 2025

Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, the Netherlands. Electronic address:

It is well established that when we hold more content in working memory, we are slower to act upon part of that content when it becomes relevant for behavior. Here, we asked whether this load-related slowing is due to slower access to the sensory representations held in working memory (as predicted by serial working-memory search), or by a reduced preparedness to act upon those sensory representations once accessed. To address this, we designed a visual-motor working-memory task in which participants memorized the orientation of two or four colored bars, of which one was cued for reproduction.

View Article and Find Full Text PDF

Fast periodic visual stimulation (FPVS) coupled with EEG has been used for a decade to measure word-selective neural responses in (a)typical adults and developmental readers. Here, we used this FPVS-EEG approach to evaluate suitable and optimal stimulation frequency rates for prelexical and lexical word-selective responses and relate these rates to typical reading speed and interindividual variability in reading performance. EEG was recorded in 41 healthy adults who viewed words inserted periodically (1 Hz) at four different stimulation frequency rates (4 Hz, 6 Hz, 10 Hz, and 20 Hz).

View Article and Find Full Text PDF

The ventromedial prefrontal cortex (VMPFC), located along the medial aspect of the frontal area, plays a critical role in regulating arousal/emotions. Its intricate connections with subcortical structures, including the striatum and amygdala, highlight the VMPFC's importance in the neurocircuitry of addiction. Due to these features, the VMPFC is considered a promising target for transcranial magnetic stimulation (TMS) in substance use disorders (SUD).

View Article and Find Full Text PDF

VR Cognitive-based Intervention for Enhancing Cognitive Functions and Well-being in Older Adults with Mild Cognitive Impairment: Behavioral and EEG Evidence.

Psychosoc Interv

January 2025

Burapha University Faculty of Humanities and Social Sciences Department of Psychology Thailand Department of Psychology, Faculty of Humanities and Social Sciences, Burapha University, Thailand.

Mild cognitive impairment (MCI) has been recognized as a window of opportunity for therapeutic and preventive measures to slow cognitive decline. The current study investigated the efficacy of the virtual reality (VR) cognitive-based intervention on verbal and visuospatial short-term memory (STM), executive functions (EFs), and wellbeing among older adults with and without MCI. The immersive VR cognitive-based intervention comprised eight 60-minute sessions, held twice a week over a span of 30 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!