A long-standing theory for the genesis of continental crust is that it is formed in subduction zones. However, the observed seismic properties of lower crust and upper mantle in oceanic island arcs differ significantly from those in the continental crust. Accordingly, significant modifications of lower arc crust must occur, if continental crust is indeed formed from island arcs. Here we investigate how the seismic characteristics of arc crust are transformed into those of the continental crust by calculating the density and seismic structure of two exposed sections of island arc (Kohistan and Talkeetna). The Kohistan crustal section is negatively buoyant with respect to the underlying depleted upper mantle at depths exceeding 40 kilometres and is characterized by a steady increase in seismic velocity similar to that observed in active arcs. In contrast, the lower Talkeetna crust is density sorted, preserving only relicts (about ten to a hundred metres thick) of rock with density exceeding that of the underlying mantle. Specifically, the foundering of the lower Talkeetna crust resulted in the replacement of dense mafic and ultramafic cumulates by residual upper mantle, producing a sharp seismic discontinuity at depths of around 38 to 42 kilometres, characteristic of the continental Mohorovičić discontinuity (the Moho). Dynamic calculations indicate that foundering is an episodic process that occurs in most arcs with a periodicity of half a million to five million years. Moreover, because foundering will continue after arc magmatism ceases, this process ultimately results in the formation of the continental Moho.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature12758 | DOI Listing |
Environ Res
December 2024
Vale Institute of Technology, Rua Boaventura da Silva 955, Nazaré 66055-090 Belém, Pará, Brazil.
Understanding geochemical source-sink relationships is an important aspect for developing background values of potentially toxic elements (PTEs) in a lake basin. This approach was studied in the Araguaia belt of Amazonia, Brazil. A total of 96 sediments (from 13 lake cores LA1-LA13), 36 surface soils, and 19 catchment rocks were collected in 2022 and chemical analysis of these samples was performed in the fine fraction (< 177 μm) using XRF and ICP-MS.
View Article and Find Full Text PDFACS Omega
December 2024
School of Earth Sciences, East China University of Technology, Nanchang, Jiangxi Province 330013, China.
The Chepaizi Uplift, situated on the western edge of the Junggar Basin in northwestern China, has recently become a significant target area for in situ leach sandstone-type uranium exploration. The Neogene Shawan Formation, a newly identified uranium-bearing layer, has gained considerable attention for its potential. This study utilizes scanning electron microscopy (SEM), X-ray powder diffraction (XRD), whole-rock geochemistry, and electron probe microanalysis (EPMA) of uranium minerals.
View Article and Find Full Text PDFDitrău Alkaline Massif is one of the few syenitic Massifs in Europe subjected to mining exploration in the past, located in the Eastern Carpathians, Romania. The heterogenous petrography includes acid to ultrabasic rocks such as syenites, hornblendites, and diorites, making it the defining feature of the Massif. In this study, we analyze the river bed sediments of two rivers, Ditrău and Jolotca, draining the Ditrău Alkaline Massif to determine their geochemical composition, with particular interest in Rare Earth Elements.
View Article and Find Full Text PDFChemosphere
December 2024
Univ Brest, CNRS, UMS 3113, Institut Universitaire Européen de la Mer (IUEM), 29280, Plouzané, France.
We determined the concentrations of trace elements including Fe, Al, rare earth elements and Y (REY), in Ascophyllum nodosum, one of the most abundant brown macroalgae in the North Atlantic. Samples were collected in the Bay of Brest (Brittany, France) and in the estuary of its main contributing river. The Y/Ho, Al/Ga, and Zr/Hf ratios display values distinctive from seawater, but similar to the continental crust; an observation which we show cannot be explained by the incorporation of terrigenous particles, nor inorganic colloids.
View Article and Find Full Text PDFSci Rep
November 2024
Dipartimento di Scienze, Università degli Studi Roma Tre, Rome, Italy.
We use seismic ambient noise data from 724 publicly available broadband seismic stations across central Europe to create detailed phase velocity and attenuation maps of Rayleigh waves, focusing on short periods down to 3 s. We interpret these maps in terms of the underlying physical processes relevant to the nature of continental crust. Through a regionalized interpretation based on tectonic settings, we highlight the significant role of fluid-filled fractures in the attenuation of surface waves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!