Background: We investigated the biting patterns and seasonal abundances of Anopheles gambiae s.l. and An. funestus mosquitoes in Kamuli District, Uganda.
Methods: Hourly indoor and outdoor catches of human biting mosquitoes were sampled from 19.00 to 07.00 hours for four consecutive nights each month using bed net traps in forty-eight houses randomly selected from Bugabula county where insecticide-treated bed nets (ITNs) had been used for at least five years and Budiope county where ITNs had not been used. The indoor and outdoor human-biting fractions, time of biting of the anophelines and climatic data were recorded from January to December 2010. Data were analysed using Multi-way analysis of variance, Kruskal-wallis rank sum test and Pearson correlation. The number of mosquitoes caught biting humans and resting indoors, the indoor and outdoor human biting densities and biting rates during different hours of the night, and mosquito abundances for a twelve-month sampling period in both zones are reported.
Results: Approximately four times more Anopheles mosquitoes were caught biting humans in Budiope County than in the Bugabula zone, with An. gambiae s. l. catches exceeding those of An. funestus. In both zones, peak night biting occurred between 23.00 and 05.00 hours. The majority of bites occurred between 03.00 and 06.00 hours for both Anopheles gambiae s. l. and funestus group. Outdoor biting densities of Anopheles gambiae s. l. exceeded the indoor biting densities throughout the night in both zones, while the indoor and outdoor human biting densities of An. funestus group were apparently equal. The outdoor and indoor human biting rates were similar in both zones. In Bugabula county, the abundance of An. gambiae s.l. was rainfall-dependent, while the An. funestus group could thrive with or without rain fall. In Budiope county, both An. gambiae s.l. and An. funestus mosquitoes thrived all year round regardless of the amount of rainfall.
Conclusion: Considering the biting patterns, and seasonal abundances exhibited by Anopheles gambiae s.l. and An. funestus mosquitoes in Kamuli district, intensive use of ITNs combined with indoor residual spraying, environmental management and improved house designs in the context of integrated vector management may be the appropriate vector control strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866981 | PMC |
http://dx.doi.org/10.1186/1756-3305-6-340 | DOI Listing |
Malar J
January 2025
Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya.
Background: The current study sought to re-evaluate malaria prevalence, susceptibility to artemisinin-based combination therapy (ACT), transmission patterns and the presence of malaria vectors in the Kikuyu area of the Kenyan Central highlands, a non-traditional/low risk malaria transmission zone where there have been anecdotal reports of emerging malaria infections.
Methods: Sampling of adult mosquitoes was done indoors, while larvae were sampled outdoors in June 2019. The malaria clinical study was an open label non-randomized clinical trial where the efficacy of one ACT drug, was evaluated in two health facilities.
Insect Biochem Mol Biol
January 2025
Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA. Electronic address:
Insect prophenoloxidases (proPO) are activated during immune responses by a proPO activating protease (PAP) in the presence of a high molecular weight cofactor assembled from serine protease homologs (SPH) that lack proteolytic activity. PAPs and the SPHs have a similar architecture, with an amino-terminal clip domain and a carboxyl-terminal protease domain. The SPHs belong to CLIPA subfamily of SP-related proteins.
View Article and Find Full Text PDFGac Sanit
January 2025
Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Sevilla, España; Ciber de Epidemiología y Salud Pública (CIBERESP), España.
The aim of this field note is to report the presence of new mosquito species (Diptera: Culicidae) in the province of Segovia and discuss their potential role in pathogen transmission. In August 2024, two female mosquitoes were captured and identified as Aedes geniculatus (Olivier, 1791) and Anopheles petragnani (Del Vecchio, 1939) through a combination of traditional morphological identification and molecular analysis of their COI gene sequences. In urban environments, like the study area, these species seem to be attracted to humans.
View Article and Find Full Text PDFNat Commun
January 2025
Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
Plasmodium, the causative agents of malaria, are obtained by mosquitoes from an infected human. Following Plasmodium acquisition by Anopheles gambiae, mosquito gamma-interferon-inducible lysosomal thiol reductase (mosGILT) plays a critical role in its subsequent sporogony in the mosquito. A critical location for this development is the midgut, a tissue we show expresses mosGILT.
View Article and Find Full Text PDFMalar J
January 2025
Malaria Research Unit, Institut Pasteur du Cambodge, PO Box 983, Phnom Penh, Cambodia.
Background: Mosquitoes are important drivers of infectious diseases transmission, with Anopheles mosquitoes being responsible of malaria transmission. In Cambodia, where malaria is prevalent in forested regions, understanding the ecology of these vectors is crucial. This study aimed to investigate the abundance, distribution, seasonal patterns, biting behaviour of Anopheles mosquitoes, and prevalence of Plasmodium, in Mondulkiri province, Northeastern Cambodia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!