In ultrasound images, tissues are characterized by their speckle texture. Moment-based techniques have proven their ability to capture texture features. However, in ultrasound images, the speckle size increases with the distance from the probe and in some cases the speckle has a concentric texture arrangement. We propose to use moment invariants with respect to image scale and rotation to capture the texture in such cases. Results on synthetic data show that moment invariants are able to characterize the texture but also that some moment orders are sensitive to regions and, moreover, some are sensitive to the boundaries between two different textures. This behavior seems to be very interesting to be used within some segmentation scheme dealing with a combination of regional and boundary information. In this paper we will try to prove the usability of this complementary information in a min-cut/max-flow graph cut scheme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2013.10.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!