A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The phosphate of pyridoxal-5'-phosphate is an acid/base catalyst in the mechanism of Pseudomonas fluorescens kynureninase. | LitMetric

Kynureninase (L-kynurenine hydrolase, EC 3.7.1.3) catalyzes the hydrolytic cleavage of L-kynurenine to L-alanine and anthranilic acid. The proposed mechanism of the retro-Claisen reaction requires extensive acid/base catalysis. Previous crystal structures showed that Tyr226 in the Pseudomonas fluorescens enzyme (Tyr275 in the human enzyme) hydrogen bonds to the phosphate of the pyridoxal-5'-phosphate (PLP) cofactor. This Tyr residue is strictly conserved in all sequences of kynureninase. The human enzyme complexed with a competitive inhibitor, 3-hydroxyhippuric acid, showed that the ligand carbonyl O is located 3.7 Å from the phenol of Tyr275 (Lima, S., Kumar, S., Gawandi, V., Momany, C. & Phillips, R. S. (2009) J. Med. Chem. 52, 389-396). We prepared a Y226F mutant of P. fluorescens kynureninase to probe the role of this residue in catalysis. The Y226F mutant has approximately 3000-fold lower activity than wild-type, and does not show the pKa values of 6.8 on kcat and 6.5 and 8.8 on k(cat)/K(m) seen for the wild-type enzyme (Koushik, S. V., Moore, J. A. III, Sundararaju, B. & Phillips, R. S. (1998) Biochemistry 37, 1376-1382). Wild-type kynureninase shows a resonance at 4.5 ppm in (31)P-NMR, which is shifted to 5.0, 3.3 and 2.0 ppm when the potent inhibitor 5-bromodihydrokynurenine is added. However, Y226F kynureninase shows resonances at 3.6 and 2.5 ppm, and no change in the peak position is seen when 5-bromodihydrokynurenine is added. Taken together, these results suggest that Tyr226 mediates proton transfer between the substrate and the phosphate, which accelerates formation of external aldimine and gem-diol intermediates. Thus, the phosphate of PLP acts as an acid/base catalyst in the mechanism of kynureninase.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.12671DOI Listing

Publication Analysis

Top Keywords

phosphate pyridoxal-5'-phosphate
8
acid/base catalyst
8
catalyst mechanism
8
pseudomonas fluorescens
8
fluorescens kynureninase
8
human enzyme
8
y226f mutant
8
kynureninase
7
phosphate
4
pyridoxal-5'-phosphate acid/base
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!