canSAR (http://cansar.icr.ac.uk) is a public integrative cancer-focused knowledgebase for the support of cancer translational research and drug discovery. Through the integration of biological, pharmacological, chemical, structural biology and protein network data, it provides a single information portal to answer complex multidisciplinary questions including--among many others--what is known about a protein, in which cancers is it expressed or mutated, and what chemical tools and cell line models can be used to experimentally probe its activity? What is known about a drug, its cellular sensitivity profile and what proteins is it known to bind that may explain unusual bioactivity? Here we describe major enhancements to canSAR including new data, improved search and browsing capabilities and new target, cancer cell line, protein family and 3D structure summaries and tools.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964944PMC
http://dx.doi.org/10.1093/nar/gkt1182DOI Listing

Publication Analysis

Top Keywords

drug discovery
8
cansar updated
4
updated cancer
4
cancer drug
4
discovery knowledgebase
4
knowledgebase cansar
4
cansar http//cansaricracuk
4
http//cansaricracuk public
4
public integrative
4
integrative cancer-focused
4

Similar Publications

Stimuli-Responsive Nano Drug Delivery Systems for the Treatment of Neurological Diseases.

Small

January 2025

Molecular Imaging Center, National Center for Drug Screening, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.

Nanomaterials with unparalleled physical and chemical attributes have become a cornerstone in the field of nanomedicine delivery. These materials can be engineered into various functionalized nanocarriers, which have become the focus of research. Stimulus-responsive nanodrug delivery systems (SRDDS) stand out as a sophisticated class of nanocarriers that can release drugs in response to environmental cues.

View Article and Find Full Text PDF

The recent severe acute respiratory syndrome coronavirus 2 pandemic has clearly exemplified the need for broad-spectrum antiviral (BSA) medications. However, previous outbreaks show that about one year after an outbreak, interest in antiviral research diminishes and the work toward an effective medication is left unfinished. Martin et al.

View Article and Find Full Text PDF

Traditional drug discovery methods such as wet-lab testing, validations, and synthetic techniques are time-consuming and expensive. Artificial Intelligence (AI) approaches have progressed to the point where they can have a significant impact on the drug discovery process. Using massive volumes of open data, artificial intelligence methods are revolutionizing the pharmaceutical industry.

View Article and Find Full Text PDF

In the ventricular-subventricular-zone (V-SVZ) of the postnatal mammalian brain, immature neurons (neuroblasts) are generated from neural stem cells throughout their lifetime. These V-SVZ-derived neuroblasts normally migrate to the olfactory bulb through the rostral migratory stream, differentiate into interneurons, and are integrated into the preexisting olfactory circuit. When the brain is injured, some neuroblasts initiate migration toward the lesion and attempt to repair the damaged neuronal circuitry, but their low regeneration efficiency prevents functional recovery.

View Article and Find Full Text PDF

A bird's-eye view of the biological mechanism and machine learning prediction approaches for cell-penetrating peptides.

Front Artif Intell

January 2025

Department of Genetic Engineering, Computational Biology Lab, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Chennai, India.

Cell-penetrating peptides (CPPs) are highly effective at passing through eukaryotic membranes with various cargo molecules, like drugs, proteins, nucleic acids, and nanoparticles, without causing significant harm. Creating drug delivery systems with CPP is associated with cancer, genetic disorders, and diabetes due to their unique chemical properties. Wet lab experiments in drug discovery methodologies are time-consuming and expensive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!