Fetal microchimeric cells (FMCs) enter the maternal circulation and persist in tissue for decades. They have capacity to home to injured maternal tissue and differentiate along that tissue's lineage. This raises the question of the origin(s) of cells transferred to the mother during pregnancy. FMCs with a mesenchymal phenotype have been documented in several studies, which makes mesenchymal stem cells an attractive explanation for their broad plasticity. Here we assessed the recruitment and mesenchymal lineage contribution of FMCs in response to acute kidney fibrosis induced by aristolochic acid injection. Serial in vivo bioluminescence imaging revealed a biphasic recruitment of active collagen-producing FMCs during the repair process of injured kidney in post-partum wild-type mothers that had delivered transgenic pups expressing luciferase under the collagen type I-promoter. The presence of FMCs long-term post injury (day 60) was associated with profibrotic molecules (TGF-β/CTGF), serum urea levels, and collagen deposition. Immunostaining confirmed FMCs at short term (day 15) using post-partum wild-type mothers that had delivered green fluorescent protein-positive pups and suggested a mainly hematopoietic phenotype. We conclude that there is biphasic recruitment to, and activity of, FMCs at the injury site. Moreover, we identified five types of FMC, implicating them all in the reparative process at different stages of induced renal interstitial fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ki.2013.459 | DOI Listing |
Mol Biol Evol
January 2025
Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain.
The impact of gene loss on the diversification of taxa and the emergence of evolutionary innovations remains poorly understood. Here, our investigation on the evolution of the Fibroblast Growth Factors (FGFs) in appendicularian tunicates as a case study reveals a scenario of "less, but more" characterized by massive losses of all Fgf gene subfamilies, except for the Fgf9/16/20 and Fgf11/12/13/14, which in turn underwent two bursts of duplications. Through phylogenetic analysis, synteny conservation, and gene and protein structure, we reconstruct the history of appendicularian Fgf genes, highlighting their paracrine and intracellular functions.
View Article and Find Full Text PDFAdv Healthc Mater
November 2024
Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
Repairing osteochondral defects necessitates the intricate reestablishment of the microenvironment. The cartilage layer consists of a porous gelatin methacryloyl hydrogel (PGelMA) covalently crosslinked with the chondroinductive peptide CK2.1 via a "linker" acrylate-PEG-N-hydroxysuccinimide (AC-PEG-NHS).
View Article and Find Full Text PDFHeart Rhythm
November 2024
Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, SA, Australia. Electronic address:
Int J Cardiol
January 2025
Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA. Electronic address:
Background: Physical activity is protective against cardiovascular disease (CVD) and favorably improves CVD risk profile. However, more than 25 % of American adults report no participation in physical activity. Whole body electronic muscle stimulation (WB-EMS) training is a novel FDA-cleared technology which offers a time-efficient and adaptable method for physical training by simultaneously stimulating the main muscle groups using percutaneous electrical impulse transmission.
View Article and Find Full Text PDFNeuropsychopharmacology
October 2024
Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!