Background: Phenethyl isothiocyanate (PEITC) is a cancer chemopreventive agent from cruciferous vegetables. Cholangiocarcinoma (CCA) is a chemo-resistant cancer with very poor prognosis. We evaluated the effects of PEITC on induction of apoptotic cell death in relation to cellular glutathione (GSH) and mitochondrial function of a CCA cell line, KKU-M214.
Methods: Cytotoxic effects of PEITC on a CCA cell line, KKU-M214, and a reference cell line, Chang cells were evaluated. To delineate mechanisms of cell death, the following parameters were measured; GSH and superoxide levels as the oxidative status parameters, apoptosis related proteins levels using Western blotting. Cellular free calcium level and mitochondrial transmembrane potential were also measured.
Results: PEITC induced apoptotic cell death of both KKU-M214 and Chang cells. After PEITC treatment, both cells showed decrease of Bcl-xl and increase of Bax levels. While KKU-M214 cells released AIF, Chang cells released cytochrome c, with subsequent activation of caspase 3 and 9, upon PEITC treatment. PEITC induced superoxide formation in both cells, although it seemed not play a role in cell death. PEITC caused GSH redox stress in different ways in two cell types, because N-acetylcysteine (NAC) prevented redox stress in Chang but not in KKU-M214 cells. The loss of mitochondrial transmembrane potential was induced by PEITC concurrent with GSH stress, but was not a primary cause of cell death. The rapid increase of free calcium level in cytosol was associated with cell death in both cell lines. These events were prevented by NAC in Chang cells, but not in KKU-M214 cells.
Conclusion: PEITC induced cell death KKU-M214 cells and Chang cells via increase of cellular calcium mobilization and activation of mitochondrial cell death pathway. The effects of PEITC on the redox stress was mediated via different ways in CCA and Chang cells because NAC could prevent redox stress in Chang cells, but not in KKU-M214 cells. The multiple effects of PEITC may be useful for the development of novel chemotherapy for CCA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235027 | PMC |
http://dx.doi.org/10.1186/1471-2407-13-571 | DOI Listing |
Zool Res
January 2025
Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China. E-mail:
Severe combined immunodeficiency disease (SCID), characterized by profound immune system dysfunction, can lead to life-threatening infections and death. Animal models play a pivotal role in elucidating biological processes and advancing therapeutic strategies. Recent advances in gene-editing technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), CRISPR/Cas9, and base editing, have significantly enhanced the generation of SCID models.
View Article and Find Full Text PDFCirc Res
January 2025
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada (C.P., S.A., J.W.A., R.L., F.N., J.S., I.C.).
Background: Iron is an essential micronutrient for cell survival and growth; however, excess of this metal drives ferroptosis. Although maternal iron imbalance and placental hypoxia are independent contributors to the pathogenesis of preeclampsia, a hypertensive disorder of pregnancy, the mechanisms by which their interaction impinge on maternal and placental health remain elusive.
Methods: We used placentae from normotensive and preeclampsia pregnancy cohorts, human H9 embryonic stem cells differentiated into cytotrophoblast-like cells, and placenta-specific preeclamptic mice.
Biomater Sci
January 2025
School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China.
Photodynamic therapy (PDT), utilizing a photosensitizer (PS) to induce tumor cell death, is an effective modality for cancer treatment. PS-peptide conjugates have recently demonstrated remarkable antitumor potential in preclinical trials. However, the limited cell membrane binding affinity and rapid systemic clearance have hindered their transition to clinical applications.
View Article and Find Full Text PDFFront Mol Neurosci
January 2025
Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
PANoptosis is a novelly defined mode of programmed cell death that involves the activation of multiple cellular death pathways, including pyroptosis, apoptosis, and necroptosis, triggering robust inflammatory reactions. Autophagy is a crucial cellular process that maintains cellular homeostasis and protects cells from various stresses. PANoptosis and autophagy, both vital players in the intricate pathological progression of ischemic stroke (IS), a brain ailment governed by intricate cell death cascades, have garnered attention in recent years for their potential interplay.
View Article and Find Full Text PDFFront Immunol
January 2025
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
Introduction: Hematopoietic stem cell transplantation (HSCT) and chemotherapy are considered potentially curative options for post-remission therapy in acute myeloid leukemia (AML). However, the comparative effectiveness of these approaches in favorable- and intermediate-risk AML remains unclear and requires further investigation.
Methods: In this retrospective study, 111 patients diagnosed with de novo favorable- and intermediate-risk AML, categorized according to the ELN 2022 guidelines, were investigated to compare outcomes following autologous HSCT (auto-HSCT), matched sibling donor HSCT (MSD-HSCT), and chemotherapy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!