SysBioCube is an integrated data warehouse and analysis platform for experimental data relating to diseases of military relevance developed for the US Army Medical Research and Materiel Command Systems Biology Enterprise (SBE). It brings together, under a single database environment, pathophysio-, psychological, molecular and biochemical data from mouse models of post-traumatic stress disorder and (pre-) clinical data from human PTSD patients.. SysBioCube will organize, centralize and normalize this data and provide an access portal for subsequent analysis to the SBE. It provides new or expanded browsing, querying and visualization to provide better understanding of the systems biology of PTSD, all brought about through the integrated environment. We employ Oracle database technology to store the data using an integrated hierarchical database schema design. The web interface provides researchers with systematic information and option to interrogate the profiles of pan-omics component across different data types, experimental designs and other covariates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814498 | PMC |
Mol Biol Rep
January 2025
Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China.
As multiple imaging modalities cannot reliably diagnose cardiac tumors, the molecular approach offers alternative ways to detect rare ones. One such molecular approach is CRISPR-based diagnostics (CRISPR-Dx). CRISPR-Dx enables visual readout, portable diagnostics, and rapid and multiplex detection of nucleic acids such as microRNA (miRNA).
View Article and Find Full Text PDFPlants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.
Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania.
The expansion of single-cell analytical techniques has empowered the exploration of diverse biological questions at the individual cells. Droplet-based single-cell RNA sequencing (scRNA-seq) methods have been particularly widely used due to their high-throughput capabilities and small reaction volumes. While commercial systems have contributed to the widespread adoption of droplet-based scRNA-seq, their relatively high cost limits the ability to profile large numbers of cells and samples.
View Article and Find Full Text PDFJ Fish Biol
January 2025
Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
Animal growth is a fundamental component of population dynamics, which is closely tied to mortality, fecundity, and maturation. As a result, estimating growth often serves as the basis of population assessments. In fish, analysing growth typically involves fitting a growth model to age-at-length data derived from counting growth rings in calcified structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!