A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genome and proteome annotation using automatically recognized concepts and functional networks. | LitMetric

AI Article Synopsis

  • - Many bioinformatics tools focus on predicting the functions or disease associations of genes and proteins, primarily using the Gene Ontology (GO), while often neglecting other available ontologies.
  • - The study evaluates new methods for automatically assigning gene-term annotations and identifies various useful concepts from different public ontologies beyond GO.
  • - Researchers identified over 127,000 statistically significant terms across 250 ontologies that can be predicted on human genes, showing that both curated and automated terms can enhance predictive models.

Article Abstract

Many tools have been developed for prediction of the function or disease association of genes and proteins, and this continues to be a highly active area of bioinformatics research. Typically, these methods predict which concepts should be annotated to genes or proteins, using terms from ontologies such as Gene Ontology (GO), largely overlooking other ontologies that are available. Here, we set out to broadly evaluate novel, automatically retrieved, gene-term annotations and identify those concepts of publicly available ontologies that can be predicted using a generalized tool for prediction of annotations. We identified terms that perform better than expected by chance using randomly generated gene sets and show that both manually curated terms in GO and automatically recognized terms can be used to develop reasonable predictive models. In all, we characterize terms in over 250 ontologies and identify more than 127,000 statistically significant terms that can be predicted on human genes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

automatically recognized
8
genes proteins
8
terms
6
genome proteome
4
proteome annotation
4
annotation automatically
4
recognized concepts
4
concepts functional
4
functional networks
4
networks tools
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!