Background: Even though introductions of exotic species provide ready-made experiments of rapid evolution, few studies have examined the genetic structure of an exotic species shortly after its initial introduction and subsequent spread. To determine the genetic structure of its populations during the initial introduction, we investigated the invasive sweet potato whitefly (Bemisia tabaci Q, commonly known as B. tabaci biotype Q) in China, which was introduced in approximately 2003. A total of 619 B. tabaci Q individuals in 20 provinces throughout China were collected and analyzed using five microsatellite loci.
Results: The introduced populations of B. tabaci Q in China represent eight genetic clusters with different geographic distributions. The populations in Yunnan Province, where B. tabaci Q was first detected, are genetically different from the other populations in China.
Conclusion: The introduced populations of B. tabaci Q in China have high spatial genetic heterogeneity. Additional research is required to determine whether the heterogeneity results from multiple introductions, rapid evolution following one or few introductions, or some combination of multiple introductions and rapid evolution. The heterogeneity, however, is inconsistent with a single introduction at Yunnan Province, where B. tabaci Q was first detected, followed by spread.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841195 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079997 | PLOS |
Physiol Mol Biol Plants
December 2024
School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010 Sichuan Province China.
Unlabelled: The rapid growth of Bamboo made the uptake and allocation of nitrogen much important. Nitrate is the main form that plant utilized nitrogen by nitrate transporters (NRTs) as well as ammonium salt. In this study, we identified 155 genes which mapped to 32 chromosomes out of 35 chromosomes in .
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States.
Rapid evolution of smart devices necessitates high-performance, lightweight materials for effective electromagnetic interference (EMI) shielding. TiCT MXene nanosheets are promising for such applications, yet the high solid content typically required for 3D-printable MXene inks limits their scalability and cost efficiency. In this study, we present an MXene-based ink with an ultralow solid content (0.
View Article and Find Full Text PDFNature
January 2025
Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.
In organisms ranging from vertebrates to plants, major components of centromeres are rapidly evolving repeat sequences, such as tandem repeats (TRs) and transposable elements (TEs), which harbour centromere-specific histone H3 (CENH3). Complete centromere structures recently determined in human and Arabidopsis suggest frequent integration and purging of retrotransposons within the TR regions of centromeres. Despite the high impact of 'centrophilic' retrotransposons on the paradox of rapid centromere evolution, the mechanisms involved in centromere targeting remain poorly understood in any organism.
View Article and Find Full Text PDFBiophys Chem
December 2024
Department of Chemistry, De La Salle University, Manila 0922, Philippines. Electronic address:
SARS-CoV-2 remains a global threat with new sublineages posing challenges, particularly in the Philippines. Hesperidin (HD) is being studied as a potential prophylactic for COVID-19. However, the virus's rapid evolution could alter how HD binds to it, affecting its effectiveness.
View Article and Find Full Text PDFAccid Anal Prev
December 2024
College of Metropolitan Transportation, Beijing University of Technology, Beijing, China.
Mixed platoon with a human-driven leading vehicle may be a transition mode prior to the widespread adoption of fully autonomous platoon. Enhancing the driving safety of the leading vehicle driver is crucial for improving the overall operational safety of the mixed platoon. Predictive-Forward-Collision-Warning (PFCW), an emerging technology in transportation, holds promise in mitigating collision risks for drivers by presenting traffic information beyond their immediate visual range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!