Densification of a continuous random network model of amorphous SiO2 glass.

Phys Chem Chem Phys

Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA.

Published: January 2014

We have investigated the mechanism of densification of a nearly perfect continuous random network (CRN) model of amorphous SiO2 (a-SiO2) glass with 1296 atoms and periodic boundary conditions. The model has no under- or over-coordinated atoms and small bond length and bond angle distributions. This near-perfect model is systematically densified up to a pressure of 80 GPa using ab initio constant-pressure technique. By assessing a full spectrum of properties including atomic structure, bonding characteristics, effective charges, bond order values, electron density of states, localization of wave functions, elastic and mechanical properties, and interband optical absorption at each pressure, we reveal the pertinent details on the structural, mechanical and optical characteristics of the glass model under pressure. They all confirm the central theme that amorphous to amorphous phase transformation (AAPT) from a low-density state to a high-density state is at a pressure between 20 and 35 GPa in this nearly ideal a-SiO2 network. This pressure range represents an upper limit for such a transition in vitreous silica. The phase transformation roots from the change of Si-O bonding from a mixture of ionic and covalent nature at low pressure to a highly covalent bonding under high pressure. In addition, the calculated theoretical refractive index of the glass model as a function of the pressure is reported for the first time and in good agreement with the available experimental data.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp53192aDOI Listing

Publication Analysis

Top Keywords

continuous random
8
random network
8
model amorphous
8
amorphous sio2
8
pressure
8
pressure gpa
8
glass model
8
phase transformation
8
model
6
densification continuous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!