A pharmacogenetic study of aldehyde oxidase I in patients treated with XK469.

Pharmacogenet Genomics

aDepartment of Medicine, The University of Chicago, Chicago, Illinois bDepartment of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA.

Published: February 2014

XK469 (NSC 697887) is a selective topoisomerase II β inhibitor eliminated mainly by aldehyde oxidase I (AOX1). We performed a candidate gene study to investigate whether AOX1 genetic variation contributes to interindividual variability in XK469 clearance. Forty-one AOX1 single nucleotide polymorphisms (SNPs) and seven liver expression quantitative trait loci were genotyped in White patients with advanced refractory solid tumors (n=59) and leukemia (n=33). We found a significant decrease in clearance (τ=-0.32, P=0.003) in solid tumor patients with rs10931910, although it failed to replicate in the leukemia cohort (τ=0.18, P=0.20). Four other AOX1 SNPs were associated with clearance (P=0.01-0.02) in only one of the two cohorts. Our study provides a starting point for future investigations on the functionality of AOX1 SNPs. However, variability in XK469 clearance cannot be attributed to polymorphisms in AOX1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901533PMC
http://dx.doi.org/10.1097/FPC.0000000000000023DOI Listing

Publication Analysis

Top Keywords

aldehyde oxidase
8
variability xk469
8
xk469 clearance
8
aox1 snps
8
aox1
6
pharmacogenetic study
4
study aldehyde
4
oxidase patients
4
patients treated
4
xk469
4

Similar Publications

Elucidating the Phase I metabolism of psilocin in vitro.

Arch Toxicol

January 2025

Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore.

Psilocin is a well-studied controlled substance with potential psychotherapeutic applications. However, research gaps remain regarding its metabolism. Our objective was to elucidate a comprehensive Phase I metabolic profile of psilocin to support its forensic management and clinical development.

View Article and Find Full Text PDF

Petal senescence represents a crucial phase in the developmental continuum of flowers, ensuing tissue differentiation and petal maturation, yet anteceding seed formation and development. Instigation of petal senescence entails myriad of changes at the cytological, physiological and molecular dimensions, mirroring the quintessential characteristics of cell death. In the current investigation biochemical and molecular intricacies were scrutinized across various developmental stages (bud to the senescent phase).

View Article and Find Full Text PDF

Integrative Omics and Gene Knockout Analyses Suggest a Possible Gossypol Detoxification Mechanism and Potential Key Regulatory Genes of a Ruminal Strain.

J Agric Food Chem

January 2025

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

Gossypol removal is crucial for the resourceful utilization of cottonseed meals in the food and feed industries. Herein, we investigated the comprehensive detoxification mechanism of a gossypol-tolerant strain of (WK331) newly isolated from the rumen. Biodegradation assays showed that WK331 removes over 80% of free gossypol, of which 50% was biodegraded and 30% was converted into bound gossypol.

View Article and Find Full Text PDF

Multienzyme Cascade Synthesis of Rare Sugars From Glycerol in Bacillus subtilis.

Biotechnol J

December 2024

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China.

Background: Rare sugars are valuable and unique monosaccharides extensively utilized in the food, cosmetics, and pharmaceutical industries. Considering the high purification costs and the complex processes of enzymatic synthesis, whole-cell conversion has emerged as a significantly important alternative. The Escherichia coli strain was initially used in whole-cell synthesis of rare sugars.

View Article and Find Full Text PDF

Hyperglycemia-responsive nitric oxide-releasing biohybrid cryogels with cascade enzyme catalysis for enhanced healing of infected diabetic wounds.

J Control Release

December 2024

Joint Research Center of Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China. Electronic address:

Diabetic wound infections are a frequent complication for diabetic patients, and conventional treatment for combating diabetic wound infections relies on antibiotics. However, the misuse and overuse of antibiotics have led to the emergence of drug-resistant bacteria, making these infections challenging to treat. Thus, there is an urgent need for alternative strategies to effectively manage diabetic wound infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!