A sandwich enzyme-linked immunosorbent assay (ELISA) was developed to detect the venom of Indian cobra (Naja naja naja) in various tissues (brain, heart, lungs, liver, spleen, blood, kidneys, and tissue at the site of injection) of mice after cobra venom injected at different time intervals (0, 2, 4, 6, 8, and 12 h intervals up to 24 h). Whole venom antiserum or individual venom protein antiserum (14, 29, 65, 72, and 99 kDa) could recognize N. n. naja venom by Western blotting and ELISA, and antibody titer was also assayed by ELISA. Antiserum raised against cobra venom in rabbit significantly neutralized the toxicity of venom-injected mice at different time intervals after treatment. The assay could detect N. n. naja venom levels up to 2.5 ng/ml of tissue homogenate, and the venom was detected up to 24 h after venom injection. Venom was detected in brain, heart, lungs, liver, spleen, kidneys, tissue at the bite area, and blood. As observed in mice, tissue at the site of bite area showed the highest concentration of venom and the brain showed the least. Moderate amounts of venoms were found in liver, spleen, kidneys, heart, and lungs. Development of a simple, rapid, and species-specific diagnostic kit based on this ELISA technique useful to clinicians is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0960327113511474DOI Listing

Publication Analysis

Top Keywords

venom
12
cobra venom
12
heart lungs
12
liver spleen
12
venom rabbit
8
naja naja
8
brain heart
8
lungs liver
8
kidneys tissue
8
tissue site
8

Similar Publications

Simplifying Traditional Approaches for Accessible Analysis of Snake Venom Enzymes.

Toxicon

January 2025

Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903, Ribeirão Preto, SP, Brazil. Electronic address:

Snake venoms enzymes affect diverse physiological mechanisms leading to effects such as inflammation, edema, hemolysis, and blood clotting disorders. In this report, we describe modifications to classical assays for assessing the enzymatic activity of snake venom phospholipase A (PLA) and phosphodiesterase (PDE), including the adaptation of the PDE assay to an agar plate. A final staining step, using Stains-all®, was added to the PLA activity assay on an egg yolk-containing agar plate.

View Article and Find Full Text PDF

Background: Current guidelines recommend application of the 99th percentile to determine the cut-off value on at least 120 healthy donors regardless of sex for lupus anticoagulant (LA) ratio of each step. However, a statistically significant difference between the sexes has been found for LA ratio recently.

Objectives: To clarify whether this sex difference in dilute Russell's viper venom time (DRVVT) exists in various detection systems and the necessity of setting sex-specific cut-off values.

View Article and Find Full Text PDF

Tandem duplication of genes can play a critical role in the evolution of functional novelty, but our understanding is limited concerning gene duplication's role in coevolution between species. Much is known about the evolution and function of tandemly duplicated snake venom genes, however the potential of gene duplication to fuel venom resistance within prey species is poorly understood. In this study, we characterize patterns of gene duplication of the SERPINA subfamily of genes across in vertebrates and experimentally characterize functional variation in the SERPINA3-like paralogs of a wild rodent.

View Article and Find Full Text PDF

New Frontiers in Fighting Mycobacterial Infections: Venom-Derived Peptides.

Probiotics Antimicrob Proteins

January 2025

Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.

Notwithstanding the indefatigable endeavors to develop effective anti-mycobacterial therapies, mycobacterial infections still present a tough problem for medicine today. The problem is further complicated by the disquieting surge of drug-resistant mycobacterial pathogens, which considerably narrows the existing therapeutic options. Thus, there is a genuine need to discover novel anti-mycobacterial drugs.

View Article and Find Full Text PDF

Bee venom (BV) represents a promising natural alternative to conventional antibiotics, particularly significant given its broad-spectrum antimicrobial activity and potential to address the growing challenge of antimicrobial resistance. The prevalence of antimicrobial-resistant microorganisms (AMR) is a global burden that affects human health and the economies of different countries. As a result, several scientific communities around the world are searching for safe alternatives to antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!