In the early 15th century, beeswax coating was applied to some of the cellulosic documents in a futile attempt to better conserve the paper. However, this treatment caused much more severe degradation compared to untreated Hanji. In the current study, the degradation pathway of this beeswax-treated Hanji has been clarified for the first time. The degradation of cellulose was investigated by labeling of oxidized groups combined with gel permeation chromatography, providing profiles of carbonyl and carboxyl groups relative to the molar mass distribution. The beeswax caused purely hydrolytic damage, leading to a decrease in molar mass to about one fifth of the original value. Oxidative degradation, by contrast, did not occur to any significant extent. Hydrolysis was not caused by acids but by microorganism feeding on the beeswax and excreting cellulolytic enzymes, which cause similar cellulose damage patterns. The hydrolytic enzymes were identified by typical metabolites present in the Hanji.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2013.10.033DOI Listing

Publication Analysis

Top Keywords

molar mass
8
deterioration ancient
4
ancient korean
4
korean paper
4
hanji
4
paper hanji
4
hanji treated
4
beeswax
4
treated beeswax
4
beeswax mechanistic
4

Similar Publications

4-O-Methylglucaric Acid Production from Xylan with Uronic Acid Oxidase and Comparison to Glucaric Acid from Glucose.

Chembiochem

January 2025

Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada.

This study describes an enzymatic pathway to produce high purity 4-O-methylglucaric acid from xylan, an underutilized fraction of lignocellulosic biomass. Beechwood xylan was enzymatically hydrolysed using a commercial xylanase and an α-glucuronidase from Amphibacillus xylanus to form 4-O-methylglucuronic acid, which was then purified by anion exchange chromatography and subsequently oxidized to 4-O-methylglucaric acid using a recombinantly produced uronic acid oxidase from Citrus sinensis. Enzymatic oxidation with uronic acid oxidase afforded 95 % yield in 72 hours which is considerably higher than yields previously achieved using a glucooligosaccharide oxidase from Sarocladium strictum.

View Article and Find Full Text PDF

In this study, four novels 2,5,6-trisubstituted imidazothiadiazole derivative ligands and their Ag(I) complexes were synthesized and characterized using various spectroscopic analysis techniques. First, imidazo[2,1-b][1,3,4]thiadiazole derivative (3) was obtained from the reaction of 5-amino-1,3,4-thiadiazole-2-thiol with benzyl bromide in the presence of KOH in an ethanolic medium. In the next step, the resultant compound reacted sequentially with four substituted phenacyl bromide derivatives (4a-4d) under refluxed ethanol for 24 h to obtain substituted 2-(benzylthio)-6-phenylimidazo[2,1-b][1,3,4]thiadiazole derivatives (5-8).

View Article and Find Full Text PDF

Nanomaterials that engage in well-defined and tunable interactions with proteins are pivotal for the development of advanced applications. Achieving a precise molecular-level understanding of nano-bio interactions is essential for establishing these interactions. However, such an understanding remains challenging and elusive.

View Article and Find Full Text PDF

Commercial adhesives are petroleum-based thermoset networks or nonbiodegradable thermoplastic hot melts, making them ideal targets for replacement by biodegradable alternatives. Poly(3-hydroxybutyrate) (P3HB) is a biorenewable and biodegradable alternative to conventional plastics, but microbial P3HB, which has a stereoperfect stereomicrostructure, exhibits no adhesion. In this study, by elucidating the fundamental relationship between chemocatalytically engineered P3HB stereomicrostructures and adhesion properties, we found that biodegradable syndio-rich P3HB exhibits high adhesion strength and outperforms common commercial adhesives, whereas syndiotactic, isotactic, or iso-rich P3HB shows no measurable adhesion.

View Article and Find Full Text PDF

A polysaccharide from Morchella esculenta mycelia: Structural characterization and protective effect on antioxidant stress on PC12 cells against HO-induced oxidative damage.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Morchella esculenta (L.) Pers. is considered a precious edible and medicinal fungus due to its strict growth environment requirements, difficult to cultivate, resulted in expensive in the market.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!