Solubility enhancement of α-naphthoflavone by synthesized hydroxypropyl cyclic-(1→2)-β-D-glucans (cyclosophoroases).

Carbohydr Polym

Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center & Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 143-701, South Korea.

Published: January 2014

Rhizobium leguminosarum produces unbranched cyclic β-1,2-glucans, cyclosophoraoses (Cys). In the present study, Cys were modified with hydroxypropyl groups via a one step chemical derivatization and the complexation ability and solubility enhancement of hydroxypropyl cyclosophoraoses (HP Cys) with α-naphthoflavone (α-NF) were investigated. In the presence of HP Cys, the aqueous solubility of α-NF greatly increased up to 257-fold. Complex formation of HP Cys and α-NF was confirmed by nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR) spectroscopy, and differential scanning calorimetry (DSC). Furthermore, the morphological structure of α-NF with HP Cys was examined using scanning electron microscopy (SEM). A hypothetical model was proposed based on molecular dynamics (MD) simulations and a docking study of α-NF with HP Cys. Our results suggest that HP Cys form complexes with α-NF and can be utilized as a promising solubilizer. This is the first study to identify carbohydrates that can enhance the solubility of α-NF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2013.09.104DOI Listing

Publication Analysis

Top Keywords

solubility enhancement
8
cys
8
cyclosophoraoses cys
8
solubility α-nf
8
α-nf cys
8
α-nf
7
solubility
4
enhancement α-naphthoflavone
4
α-naphthoflavone synthesized
4
synthesized hydroxypropyl
4

Similar Publications

Enhancing Biodegradation of Insoluble High Molecular Weight Polycyclic Aromatic Hydrocarbons in Macroemulsion (ME) Bioreactors with a Liquid-Liquid Interface.

ACS Appl Mater Interfaces

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.

Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), -butanol, corn oil, and () to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface.

View Article and Find Full Text PDF

Background & Aims: Infectious complications determine the prognosis of cirrhosis patients. Their infection susceptibility relates to the development of immuneparesis, a complex interplay of different immunosuppressive cells and soluble factors. Mechanisms underlying the dynamics of immuneparesis of innate immunity remain inconclusive.

View Article and Find Full Text PDF

The effect of co-precipitation and high-pressure treatment on functional and structural properties of millet and moringa protein.

Food Chem

January 2025

Department of Food Plant Operations, Incubation, and Entrepreneurship, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur 613005, Tamil Nadu, India. Electronic address:

Protein co-precipitation overcomes the limitations of individual proteins and improves their nutritional profile and functional properties. This study examined the impact of co-precipitation and high-pressure (HP) treatment on millet-moringa protein co-precipitate structure and functional properties. The co-precipitation has significantly (p < 0.

View Article and Find Full Text PDF

Molecular-level insights of microplastic-derived soluble organic matter and heavy metal interactions in different environmental occurrences through EEM-PARAFAC and FT-ICR MS.

J Hazard Mater

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China. Electronic address:

The interactions between microplastic-derived dissolved organic matter (MPs-DOM) and heavy metals (Cu, Pb, and Cd) regulate the complex environmental transport behavior of pollutants in terrestrial and aquatic environments. In this study, fluorescence excited emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) and electrospray ionization coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) were employed to investigate the complexation mechanism of MPs-DOM with heavy metals, as well as the effects of different environmental occurrences of MPs-DOM on the transport behaviors of heavy metals in saturated porous medium. The findings demonstrated that MPs-DOM, particularly humic-like substances containing aromatic structures and various oxygen functional groups, could form stable complexes with heavy metals.

View Article and Find Full Text PDF

Neuraminidase 1 regulates neuropathogenesis by governing the cellular state of microglia via modulation of Trem2 sialylation.

Cell Rep

January 2025

Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA. Electronic address:

Neuraminidase 1 (NEU1) cleaves terminal sialic acids from sialoglycoproteins in endolysosomes and at the plasma membrane. As such, NEU1 regulates immune cells, primarily those of the monocytic lineage. Here, we examine how Neu1 influences microglia by modulating the sialylation of full-length Trem2 (Trem2-FL), a multifunctional receptor that regulates microglial survival, phagocytosis, and cytokine production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!