A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

atpE gene as a new useful specific molecular target to quantify Mycobacterium in environmental samples. | LitMetric

atpE gene as a new useful specific molecular target to quantify Mycobacterium in environmental samples.

BMC Microbiol

Laboratoire Eau Environnement Systèmes Urbains (Leesu) UMR MA 102-AgroParisTech, Université Paris-Est, 6-8 avenue Blaise Pascal Cité, Descartes, FR 77455, Champs sur Marne, France.

Published: December 2013

Background: The environment is the likely source of many pathogenic mycobacterial species but detection of mycobacteria by bacteriological tools is generally difficult and time-consuming. Consequently, several molecular targets based on the sequences of housekeeping genes, non-functional RNA and structural ribosomal RNAs have been proposed for the detection and identification of mycobacteria in clinical or environmental samples. While certain of these targets were proposed as specific for this genus, most are prone to false positive results in complex environmental samples that include related, but distinct, bacterial genera. Nowadays the increased number of sequenced genomes and the availability of software for genomic comparison provide tools to develop novel, mycobacteria-specific targets, and the associated molecular probes and primers. Consequently, we conducted an in silico search for proteins exclusive to Mycobacterium spp. genomes in order to design sensitive and specific molecular targets.

Results: Among the 3989 predicted proteins from M. tuberculosis H37Rv, only 11 proteins showed 80% to 100% of similarity with Mycobacterium spp. genomes, and less than 50% of similarity with genomes of closely related Corynebacterium, Nocardia and Rhodococcus genera. Based on DNA sequence alignments, we designed primer pairs and a probe that specifically detect the atpE gene of mycobacteria, as verified by quantitative real-time PCR on a collection of mycobacteria and non-mycobacterial species. The real-time PCR method we developed was successfully used to detect mycobacteria in tap water and lake samples.

Conclusions: The results indicate that this real-time PCR method targeting the atpE gene can serve for highly specific detection and precise quantification of Mycobacterium spp. in environmental samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219376PMC
http://dx.doi.org/10.1186/1471-2180-13-277DOI Listing

Publication Analysis

Top Keywords

environmental samples
16
atpe gene
12
mycobacterium spp
12
real-time pcr
12
specific molecular
8
spp genomes
8
pcr method
8
mycobacteria
5
specific
4
gene specific
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!