The visible-light-driven photocatalytic activities of graphene-semiconductor catalysts have recently been demonstrated, however, the transfer pathway of photogenerated carriers especially where the role of graphene still remains controversial. Here we report graphene-SnO2 aerosol nanocomposites that exhibit more superior dye adsorption capacity and photocatalytic efficiency compared with pure SnO2 quantum dots, P25 TiO2, and pure graphene aerosol under the visible light. This study examines the origin of the visible-light-driven photocatalysis, which for the first time links to the synergistic effect of the cophotosensitization of the dye and graphene to SnO2. We hope this concept and corresponding mechanism of cophotosensitization could provide an original understanding for the photocatalytic reaction process at the level of carrier transfer pathway as well as a brand new approach to design novel and versatile graphene-based composites for solar energy conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am4047014DOI Listing

Publication Analysis

Top Keywords

photogenerated carriers
8
transfer pathway
8
carriers transfer
4
transfer dye-graphene-sno2
4
dye-graphene-sno2 composites
4
composites highly
4
highly efficient
4
efficient visible-light
4
visible-light photocatalysis
4
photocatalysis visible-light-driven
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!