In this study, an inkjet printing process was developed to produce thermistor arrays for temperature sensing applications. First, a formulation process was carefully performed to generate a stable nanoparticle ink for nickel oxide, a material with a large temperature coefficient of resistance. The thermistor was then fabricated by printing a square NiO thin film in between two parallel silver conductive tracks on either glass plates or polyimide films. The printed thermistor, which has an adjustable dimension with a sub-millimeter scale, can operate over a wide range from room temperature to 200 °C with great sensitivity (B values ~4300 K) without hysteretic effects. When printed on polyimide films, the thermistors can also be bent or attached to curved surfaces to provide accurate and reliable temperature measurements. Moreover, the thermistor responds quickly to small temperature changes and provides an effective tool for transient temperature measurements. Finally, a thermistor array was fabricated to show the flexibility of this inkjet printing process and to demonstrate the applicability of the printed devices for temperature sensing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am404872j | DOI Listing |
Micromachines (Basel)
December 2024
State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Accurate and efficient measurement of deposited droplets' volume is vital to achieve zero-defect manufacturing in inkjet printed organic light-emitting diode (OLED), but it remains a challenge due to droplets' featurelessness. In our work, coherence scanning interferometry (CSI) is utilized to measure the volume. However, the CSI redundant sampling and image degradation led by the sample's transparency decrease the efficiency and accuracy.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
University of Bologna, Department of Industrial Chemistry "Toso Montanari", Center of Chemical Catalysis-C(3), Via Piero Gobetti 85, 40129 Bologna, Italy. Electronic address:
Print-Light-Synthesis (PLS) combines the inkjet printing of a ruthenium precursor ink with the simultaneous photo-induced generation of ruthenium oxide films. During PLS, inkjet-printing generates on conductive as well as insulating substrates micrometer-thin reaction volumes that contain with high precision defined precursor loadings. Upon direct UV light irradiation, the Ru precursor converts to RuO while all other ink components escape in the gas phase.
View Article and Find Full Text PDFNanotechnology
January 2025
Xidian University, Room 120, G building, Southern campus of Xidian University, Xi'an, Shaanxi, 710126, CHINA.
The utilization of dual-working-electrode mode of interdigitated array (IDA) electrodes and other two-electrode systems has revolutionized electrochemical detection by enabling the simultaneous and independent detection of two species, accompanied by the exhibition of unique characteristics. In contrast to conventional dual-potential electrodes, such as the rotating ring disk electrodes (RRDE), IDA electrodes demonstrate analogous yet vastly improved performance, characterized by remarkable collection efficiency and sensitivity. Notably, due to the distinctive microscale structure of IDA electrode, the special "feedback" effect makes IDA a unique signal amplifier.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000 Zagreb, Croatia.
Prussian Blue (PB) is commonly incorporated into screen-printed enzymatic devices since it enables the determination of the enzymatically produced hydrogen peroxide at low potentials. Inkjet printing is gaining popularity in the development of electrochemical sensors as a substitute for screen printing. This work presents a fully inkjet-printed graphene-Prussian Blue platform, which can be paired with oxidase enzymes to prepare a biosensor of choice.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Korea.
Advancements in printing techniques are essential for fabricating next-generation displays. Lead halide perovskites demonstrate great potential as light emitters of solution-processed light-emitting diodes (LEDs). In particular, the perovskite/polymer composite emitters exhibit exceptional luminescent characteristics, mechanical flexibility, and environmental stability due to the improved film morphologies and defect passivation achieved through the introduction of polymer additives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!