The SIRT1 deacetylase protects mice against the symptoms of metabolic syndrome.

FASEB J

1Program in Cancer Therapeutics, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Box 926, 501 Smyth Road, Ottawa, ON, Canada K1H 8L6.

Published: March 2014

Type 2 diabetes, hepatic steatosis, and gut dysbiosis are pathophysiological consequences of obesity. Sirtuin (SIRT)-1 is a protein deacetylase implicated in the regulation of metabolic activity. We set out to determine whether the catalytic activity of SIRT1 plays a role in the development of metabolic syndrome, hepatic steatosis, and the distribution of gut microbiota. We challenged with a high-fat diet (HFD) a strain of mice homozygous for a Sirt1 allele carrying a point mutation that ablates the deacetylase activity of SIRT1. When compared to wild-type animals, mice lacking SIRT1 catalytic activity rapidly accumulated excessive hepatic lipid while fed the HFD, an effect evident within 2 wk of HFD feeding. Both white and brown adipose depots became hypertrophic, and the animals developed insulin resistance. The ratio of the major phyla of gut microbiota (Firmicutes and Bacteroidetes) increased rapidly in the SIRT1-deficient mice after HFD challenge. We conclude that the deacetylase activity of SIRT1 plays an important role in regulating glucose and hepatic lipid homeostasis. In addition, the composition of gut microbiota is influenced by both the animals' Sirt1 genotype and diet composition.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.13-243568DOI Listing

Publication Analysis

Top Keywords

activity sirt1
12
gut microbiota
12
metabolic syndrome
8
hepatic steatosis
8
catalytic activity
8
sirt1 plays
8
plays role
8
deacetylase activity
8
hepatic lipid
8
sirt1
7

Similar Publications

Pregnancy is a vulnerable time with significant cardiovascular changes that can lead to adverse outcomes, which can extend into the postpartum window. Exposure to emissions from electronic cigarettes (Ecig), commonly known as "vaping," has an adverse impact on cardiovascular function during pregnancy and post-natal life of offspring, but the postpartum effects on maternal health are poorly understood. We used a Sprague Dawley rat model, where pregnant dams are exposed to Ecigs between gestational day (GD)2-GD21 to examine postpartum consequences.

View Article and Find Full Text PDF

Metabolic-associated fatty liver disease (MAFLD) is a chronic, progressive disorder characterized by hepatic steatosis and excessive lipid accumulation. Its high global adult prevalence (approximately 50.7%), however, FDA-approved therapeutic drugs remains lacking.

View Article and Find Full Text PDF

The nucleus is a highly specialized organelle that houses the cell's genetic material and regulates key cellular activities, including growth, metabolism, protein synthesis, and cell division. Its structure and function are tightly regulated by multiple mechanisms to ensure cellular integrity and genomic stability. Increasing evidence suggests that nucleophagy, a selective form of autophagy that targets nuclear components, plays a critical role in preserving nuclear integrity by clearing dysfunctional nuclear materials such as nuclear proteins (lamins, SIRT1, and histones), DNA-protein crosslinks, micronuclei, and chromatin fragments.

View Article and Find Full Text PDF

Betulinic acid mitigates lipopolysaccharide-induced intestinal injury of weaned piglets through modulation of the mitochondrial quality control.

Int Immunopharmacol

January 2025

Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China. Electronic address:

Intestinal injury of weaned piglets often leads to reduced immunity, diarrhea and growth retardation, resulting in significant economic losses to agriculture. Betulinic acid (BA) is a natural plant-derived active ingredient with multiple pharmacological activities including immune modulation and anti-inflammatory. This study was aimed to investigate the potential mechanism that BA as a feed additive mitigated lipopolysaccharide (LPS)-induced intestinal injury in piglets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!