Structure and DNA-binding properties of the Bacillus subtilis SpoIIIE DNA translocase revealed by single-molecule and electron microscopies.

Nucleic Acids Res

Centre de Biochimie Structurale, Department of Single-Molecule Biophysics CNRS UMR5048, INSERM U554, Université de Montpellier I & II, 29 rue de Navacelles, 34090 Montpellier, France.

Published: February 2014

SpoIIIE/FtsK are a family of ring-shaped, membrane-anchored, ATP-fuelled motors required to segregate DNA across bacterial membranes. This process is directional and requires that SpoIIIE/FtsK recognize highly skewed octameric sequences (SRS/KOPS for SpoIIIE/FtsK) distributed along the chromosome. Two models have been proposed to explain the mechanism by which SpoIIIE/FtsK interact with DNA. The loading model proposes that SpoIIIE/FtsK oligomerize exclusively on SpoIIIE recognition sequence/orienting polar sequences (SRS/KOPS) to accomplish directional DNA translocation, whereas the target search and activation mechanism proposes that pre-assembled SpoIIIE/FtsK hexamers bind to non-specific DNA, reach SRS/KOPS by diffusion/3d hopping and activate at SRS/KOPS. Here, we employ single-molecule total internal reflection imaging, atomic force and electron microscopies and ensemble biochemical methods to test these predictions and obtain further insight into the SpoIIIE-DNA mechanism of interaction. First, we find that SpoIIIE binds DNA as a homo-hexamer with neither ATP binding nor hydrolysis affecting the binding mechanism or affinity. Second, we show that hexameric SpoIIIE directly binds to double-stranded DNA without requiring the presence of SRS or free DNA ends. Finally, we find that SpoIIIE hexamers can show open and closed conformations in solution, with open-ring conformations most likely resembling a state poised to load to non-specific, double-stranded DNA. These results suggest how SpoIIIE and related ring-shaped motors may be split open to bind topologically closed DNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936747PMC
http://dx.doi.org/10.1093/nar/gkt1231DOI Listing

Publication Analysis

Top Keywords

dna
10
electron microscopies
8
sequences srs/kops
8
find spoiiie
8
double-stranded dna
8
spoiiie
6
spoiiie/ftsk
6
structure dna-binding
4
dna-binding properties
4
properties bacillus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!