Residues in the polar loop of subunit c in Escherichia coli ATP synthase function in gating proton transport to the cytoplasm.

J Biol Chem

From the Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706.

Published: January 2014

Rotary catalysis in F1F0 ATP synthase is powered by proton translocation through the membrane-embedded F0 sector. Proton binding and release occur in the middle of the membrane at Asp-61 on the second transmembrane helix (TMH) of subunit c, which folds in a hairpin-like structure with two TMHs. Previously, the aqueous accessibility of Cys substitutions in the transmembrane regions of subunit c was probed by testing the inhibitory effects of Ag(+) or Cd(2+) on function, which revealed extensive aqueous access in the region around Asp-61 and on the half of TMH2 extending to the cytoplasm. In the current study, we surveyed the Ag(+) and Cd(2+) sensitivity of Cys substitutions in the loop of the helical hairpin and used a variety of assays to categorize the mechanisms by which Ag(+) or Cd(2+) chelation with the Cys thiolates caused inhibition. We identified two distinct metal-sensitive regions in the cytoplasmic loop where function was inhibited by different mechanisms. Metal binding to Cys substitutions in the N-terminal half of the loop resulted in an uncoupling of F1 from F0 with release of F1 from the membrane. In contrast, substitutions in the C-terminal half of the loop retained membrane-bound F1 after metal treatment. In several of these cases, inhibition was shown to be due to blockage of passive H(+) translocation through F0 as assayed with F0 reconstituted into liposomes. The results suggest that the C-terminal domain of the cytoplasmic loop may function in gating H(+) translocation to the cytoplasm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900959PMC
http://dx.doi.org/10.1074/jbc.M113.527879DOI Listing

Publication Analysis

Top Keywords

cys substitutions
12
ag+ cd2+
12
atp synthase
8
function gating
8
cytoplasmic loop
8
loop function
8
half loop
8
loop
6
residues polar
4
polar loop
4

Similar Publications

The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.

View Article and Find Full Text PDF

Rational engineering of a recognition group to construct a two-photon reaction-based fluorescent probe for rapid and selective sensing of cysteine.

Analyst

January 2025

Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

It is highly required to rationally design fluorescent probes a molecular engineering strategy with desired analytical performance for applications in sensing and imaging. Reaction-based fluorescent probes for highly selective sensing of cysteine (Cys) are mainly based on the participation of Cys in reactions such as, addition-cyclization with acrylates, cyclization with aldehydes, coordination displacement, Michael addition reactions, and cleavage reactions. Cys-triggered reactions with the O atoms of ether bonds has also been used to construct reaction-based fluorescent probes based on the substitution of the ether with the nucleophilic thiolate of Cys.

View Article and Find Full Text PDF

Pyridoxal 5'-phosphate (PLP)-dependent enzymes are involved in many cellular processes and possess unequalled catalytic versatility. Rational design through site-directed mutagenesis is a powerful strategy for creating tailor-made enzymes for a wide range of biocatalytic applications. PLP-dependent methionine γ-lyase (MGL), which degrades sulfur-containing amino acids, is an encouraging enzyme for many therapeutic purposes - from combating bacterial resistant strains and fungi to antitumor activity.

View Article and Find Full Text PDF

The emergence of antibiotic-resistant bacteria has attracted interest in the field of endolysins. Here, we analyzed the diversity of endolysins and identified a new endolysin, Ply2741, that exhibited broad-spectrum bactericidal activity. Our results demonstrated that Ply2741 could effectively eradicate multidrug-resistant gram-positive pathogens and .

View Article and Find Full Text PDF

Host defense antimicrobial peptides (AMPs) are promising lead molecules with which to develop antibiotics against drug-resistant bacterial pathogens. Thanatin, an inducible antimicrobial peptide involved in the host defense of insects, is gaining considerable attention in the generation of novel classes of antibiotics. Thanatin or thanatin-based analog peptides are extremely potent in killing bacterial pathogens in the Enterobacteriaceae family, including drug-resistant strains of and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!