Purpose: To investigate the influence of different actuator materials and nozzle designs on the electrostatic charge properties of a series of solution metered dose inhaler (pMDI) aerosols.
Methods: Actuators were manufactured with flat and cone nozzle designs using five different materials from the triboelectric series (Nylon, Polyethylene terephthalate, Polyethylene-High density, Polypropylene copolymer and Polytetrafluoroethylene). The electrostatic charge profiles of pMDI containing beclomethasone dipropionate (BDP) as model drug in HFA-134a propellant, with different concentrations of ethanol were studied. Electrostatic measurements were taken using a modified electrical low-pressure impactor (ELPI) and the deposited drug mass assayed chemically using HPLC.
Results: The charge profiles of HFA 134a alone have shown strong electronegativity with all actuator materials and nozzle designs, at an average of -1531.34 pC ± 377.34. The presence of co-solvent ethanol significantly reduced the negative charge magnitude. BDP reduced the suppressing effect of ethanol on the negative charging of the propellant. For all tested formulations, the flat nozzle design showed no significant differences in net charge between different actuator materials, whereas the charge profiles of cone designs followed the triboelectric series.
Conclusion: The electrostatic charging profiles from a solution pMDI containing BDP and ethanol can be significantly influenced by the actuator material, nozzle design and formulation components. Ethanol concentration appears to have the most significant impact. Furthermore, BDP interactions with ethanol and HFA have an influence on the electrostatic charge of aerosols. By choosing different combinations of actuator materials and orifice design, the fine particle fractions of formulations can be altered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-013-1253-7 | DOI Listing |
Sensors (Basel)
January 2025
Laboratory of Sensors/Actuators and Energy Harvesting, National Institute for Research and Development in Electrical Engineering ICPE-CA, 030138 Bucharest, Romania.
The use of hydrogen as fuel presents many safety challenges due to its flammability and explosive nature, combined with its lack of color, taste, and odor. The purpose of this paper is to present an electrochemical sensor that can achieve rapid and accurate detection of hydrogen leakage. This paper presents both the component elements of the sensor, like sensing material, sensing element, and signal conditioning, as well as the electronic protection and signaling module of the critical concentrations of H.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences (ISPM RAS), Profsoyuznaya Str. 70, 117393 Moscow, Russia.
To achieve the actuation of silicone-based foamed composites, a liquid-gas phase transition of the liquid captured in its pores is employed. The uncertainty of key parameters for a single or sequential open-air performance of such soft actuators limits their application. To define the main characteristics of the composites, in this work, two functions of the liquid there were separated: the pore-forming agent (FPA) and working liquid (WL).
View Article and Find Full Text PDFSoft Robot
January 2025
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China.
The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
The integration of spin crossover (SCO) magnetic switching and electric polarization properties can engender intriguing correlated magnetic and electric phenomena. However, achieving substantial SCO-induced polarization change through rational molecular design remains a formidable challenge. Herein, we present a polar Fe(II) compound that exhibits substantial polarization change in response to a thermally regulated low-spin ↔ high-spin transition.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Chemistry, National Chung Hsing University, Taichung City, 402202, Taiwan, ROC. Electronic address:
Background: To integrate valves, manifolds, and solid-phase extraction (SPE) columns into a compact device is technically difficult. Four-dimensional printing (4DP) technologies, employing stimuli-responsive materials in three-dimensional printing (3DP), are revolutionizing the fabrication, functionality, and applicability of stimuli-responsive analytical devices that can show time-dependent shape programming to enable more complex geometric designs and functions. However, 4D-printed stimuli-responsive actuators and valves utilized to control flowing streams in SPE applications remain rare.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!