A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrating gene expression and epidemiological data for the discovery of genetic interactions associated with cancer risk. | LitMetric

Integrating gene expression and epidemiological data for the discovery of genetic interactions associated with cancer risk.

Carcinogenesis

Breast Cancer and Systems Biology Unit, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain.

Published: March 2014

Dozens of common genetic variants associated with cancer risk have been identified through genome-wide association studies (GWASs). However, these variants only explain a modest fraction of the heritability of disease. The missing heritability has been attributed to several factors, among them the existence of genetic interactions (G × G). Systematic screens for G × G in model organisms have revealed their fundamental influence in complex phenotypes. In this scenario, G × G overlap significantly with other types of gene and/or protein relationships. Here, by integrating predicted G × G from GWAS data and complex- and context-defined gene coexpression profiles, we provide evidence for G × G associated with cancer risk. G × G predicted from a breast cancer GWAS dataset identified significant overlaps [relative enrichments (REs) of 8-36%, empirical P values < 0.05 to 10(-4)] with complex (non-linear) gene coexpression in breast tumors. The use of gene or protein data not specific for breast cancer did not reveal overlaps. According to the predicted G × G, experimental assays demonstrated functional interplay between lipoma-preferred partner and transforming growth factor-β signaling in the MCF10A non-tumorigenic mammary epithelial cell model. Next, integration of pancreatic tumor gene expression profiles with pancreatic cancer G × G predicted from a GWAS corroborated the observations made for breast cancer risk (REs of 25-59%). The method presented here can potentially support the identification of genetic interactions associated with cancer risk, providing novel mechanistic hypotheses for carcinogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgt403DOI Listing

Publication Analysis

Top Keywords

cancer risk
20
associated cancer
16
genetic interactions
12
breast cancer
12
gene expression
8
interactions associated
8
cancer
8
predicted gwas
8
gene coexpression
8
risk
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!