Protein aggregation and dysfunction of ubiquitin proteasome system (UPS) have been implicated in Parkinson's disease (PD) pathology for a long time. Heat shock proteins (HSPs) have neuro-protective effects in PD as they assist in protein refolding and targeting of irreparable proteins to UPS. To realize their benefits in a chronically progressing disease like PD, it is imperative to maintain slightly up-regulated levels of HSPs consistently over a longer period of time. Here, we evaluate the possible beneficial effects of HSP inducer carbenoxolone (cbx) in a rotenone-based rat model of PD. Simultaneously with rotenone, a low dose of cbx (20 mg/kg body weight) was administered for five weeks to male SD rats. Weekly behavioral analysis along with end-point evaluation of HSPs, UPS activity, apoptosis, and oxidative stress were performed. The activation of heat shock factor-1 (HSF-1) and up-regulation of HSP70, HSP40, and HSP27 levels in mid-brain following cbx administration resulted in the reduction of α-synuclein and ubiquitin aggregation. This decrease seems to be mediated by reduction in protein carbonylation as well as up-regulation of UPS activity. In addition, the decrease in apoptosis and oxidative stress following HSP upregulation prevented the decline in tyrosine hydroxylase (TH) and dopamine levels in mid-brain region, which in turn resulted in improved motor functions. Thus, persistent HSP induction at low levels by cbx could improve the PD pathophysiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2013.11.016DOI Listing

Publication Analysis

Top Keywords

heat shock
12
shock proteins
8
proteins hsps
8
parkinson's disease
8
apoptosis oxidative
8
oxidative stress
8
levels mid-brain
8
long-term heat
4
hsps
4
hsps induction
4

Similar Publications

In order to delay the progression of Rheumatoid Arthritis (RA) in patients, and to prevent further teratogenesis and irreversible bone erosion through drug intervention in the early stages of inflammation, this experiment used the mRNA encoding heat shock protein 10 (HSP10) (H-mRNA) as the main therapeutic drug and used Microfluidics technology to prepare lipid nanoparticles (LNP) (H-mRNA LNPs) containing H-mRNA, and the surface of H-mRNA-LNPs was modified using heparin particals to obtain the final formulation H-mRNA-LNPs @ heparin/ Protamine. Through the sequence modification and effect evaluation of H-mRNA, we explored the formulation screening, physical characterization, cytotoxicity in vitro, distribution in vivo, pharmacodynamics in vivo, and safety in vivo of the prepared lipid nanoparticles, which proved that this nano-preparation had good anti Rheumatoid Arthritis effects, and conducted a preliminary exploration for the application of nucleic acid drugs in the treatment of diseases outside of tumors. This research would provide new ideas for the treatment of RA.

View Article and Find Full Text PDF

HSP90 stabilizes visual cycle retinol dehydrogenase 5 in the endoplasmic reticulum by inhibiting its degradation during autophagy.

J Biol Chem

December 2024

The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The Joint National Laboratory of Antibody Drug Engineering, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, China; Kaifeng Key Lab for Cataracts and Myopia, Kaifeng Central Hospital, Kaifeng, China; Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China. Electronic address:

Genetic mutations in retinol dehydrogenase 5 (RDH5), a rate-limiting enzyme of the visual cycle, is associated with nyctalopia, AMD and stationary congenital fundus albipunctatus (FA). A majority of these mutations impair RDH5 protein expression and intracellular localization. However, the regulatory mechanisms underlying RDH5 metabolism remain unclear.

View Article and Find Full Text PDF

Deciphering roles of nine hydrophobins (Hyd1A-F and Hyd2A-C) in the asexual and insect-pathogenic lifecycles of Beauveria bassiana.

Microbiol Res

December 2024

Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Hydrophobins are small amphiphilic proteins that confer filamentous fungal hydrophobicity needed for hyphal growth, development, dispersal and adhesion to host and substrata. In insect-pathogenic Beauveria bassiana, nine hydrophobins (class I Hyd1A-F and class II Hyd2A-C) were proven to localize on the cell walls of aerial hyphae and conidia but accumulate in the vacuoles and vesicles of submerged hyphae and blastospores, respectively. Conidial hydrophobicity, adhesion to insect cuticle, virulence via normal cuticle infection and dispersal potential were significantly more reduced by the hyd1A deletion leading to complete ablation of slender rodlets on conidial coat than the hyd1B deletion, which caused a failure to assemble morphologically irregular rodlets into orderly bundles.

View Article and Find Full Text PDF

Antibodies and antibody mimics are extensively used in the pharmaceutical industry, where stringent safety standards are required. Implementing heat sterilization during or after the manufacturing process could help prevent contamination by viruses and bacteria. However, conventional antibodies and antibody mimics are not suitable for heat sterilization because they irreversibly denature at high temperatures.

View Article and Find Full Text PDF

Neuronal inclusions of hyperphosphorylated TDP-43 are hallmarks of disease for most patients with amyotrophic lateral sclerosis (ALS). Mutations in TARDBP, the gene coding for TDP-43, can cause some cases of familial inherited ALS (fALS), indicating dysfunction of TDP-43 drives disease. Aggregated, phosphorylated TDP-43 may contribute to disease phenotypes; alternatively, TDP-43 aggregation may be a protective cellular response sequestering toxic protein away from the rest of the cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!