Background Context: Chemonucleolysis has been proposed as a less invasive technique than surgery for patients with lumbar disc herniation. Once chymopapain had been approved as a chemonucleolysis drug, it was withdrawn because of serious complications. A novel agent with fewer complications would be desirable.

Purpose: The purpose of this study was to investigate the effects of recombinant human matrix metalloproteinase 7 (rhMMP-7) in experimental chemonucleolysis in vitro and in vivo and examine its effects on tissue damage.

Study Design: The study design is the experimental study using human herniated discs and enzyme substrates in vitro and dogs in vivo.

Methods: The effects of rhMMP-7 on the degradation of human herniated discs were examined by measuring the wet weight in vitro. The correlations between the decrease in wet weight by rhMMP-7 and the conditions associated with herniated discs were also analyzed. The effects of rhMMP-7 on the proteoglycan and water contents were respectively examined with alcian blue staining and T2-weighted magnetic resonance imaging at 7 days after intradiscal injection in dogs. The distribution of [125I]-labeled rhMMP-7 was investigated by autoradioluminography at 7 days after intradiscal injection in dogs. An epidural injection study with rhMMP-7 was performed to evaluate the effects on the tissue damage around the discs at 1 and 13 weeks after the treatment in dogs. The Type 1 and 2 collagen cleavage rates were measured and compared with those of aggrecan in vitro.

Results: Recombinant human matrix metalloproteinase 7 concentration dependently decreased the wet weight of herniated discs in vitro. The decrease in wet weight of the discs by rhMMP-7 did not significantly correlate with the conditions associated with herniated discs. Intradiscal injection of rhMMP-7 reduced the proteoglycan and water contents, with an increase in the serum keratan sulfate levels. Radioactivity of [125I]-labeled rhMMP-7 was detected in the nucleus pulposus and annulus fibrosus but not in the muscle. Epidural injection of rhMMP-7 had no effect on the injection site or the nerve tissues. The Type 1 and 2 collagen cleavage rates of rhMMP-7 were 1,000-fold weaker than those of aggrecan.

Conclusions: This study demonstrated experimental chemonucleolysis with rhMMP-7 in vitro and in vivo. The effects of rhMMP-7 were not affected by the conditions associated with herniated discs. The epidural injection study together with the autoradioluminography and in vitro enzyme assay suggests that intradiscal injection of rhMMP-7 may not induce tissue damage around the discs because of its distribution and substrate selectivity. Recombinant human matrix metalloproteinase 7 may be a novel and promising chemonucleolysis agent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.spinee.2013.11.039DOI Listing

Publication Analysis

Top Keywords

herniated discs
28
recombinant human
16
human matrix
16
matrix metalloproteinase
16
wet weight
16
intradiscal injection
16
rhmmp-7
14
experimental chemonucleolysis
12
human herniated
12
effects rhmmp-7
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!