Fabrication of glycine-functionalized maghemite nanoparticles for magnetic removal of copper from wastewater.

J Hazard Mater

Universidade de Brasília, Faculdade de Ceilândia, Centro Metropolitano Conjunto A Lote 1, Ceilândia, DF, CEP 72220-900, Brazil. Electronic address:

Published: January 2014

Maghemite nanoparticles (MNPs) were functionalized with glycine, by a cost-effective and environmentally friendly procedure, as an alternative route to typical amine-functionalized polymeric coatings, for highly efficient removal of copper ions from water. MNPs were synthesized by co-precipitation method and adsorption of glycine was investigated as a function of ligand concentration and pH. The efficiency of these functionalized nanoparticles for removal of Cu(2+) from water has been explored and showed that adsorption is highly dependent of pH and that it occurs either by forming chelate complexes and/or by electrostatic interaction. The adsorption process, which reaches equilibrium in few minutes and fits a pseudo second-order model, follows the Langmuir adsorption model with a very high maximum adsorption capacity for Cu(2+) of 625mg/g. Furthermore, these nanoadsorbents can be used as highly efficient separable and reusable materials for removal of toxic metal ions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2013.11.022DOI Listing

Publication Analysis

Top Keywords

maghemite nanoparticles
8
removal copper
8
highly efficient
8
adsorption
5
fabrication glycine-functionalized
4
glycine-functionalized maghemite
4
nanoparticles magnetic
4
removal
4
magnetic removal
4
copper wastewater
4

Similar Publications

The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase.

View Article and Find Full Text PDF

Extraction and quantitation of fentanyl in exhaled breath condensate using a magnetic dispersive solid phase based on graphene oxide and covalent organic framework composite and LC-MS/MS analysis.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street, Baku AZ1096, Azerbaijan. Electronic address:

Free fentanyl is responsible for its pharmacological effects, but its total concentration is typically determined for therapeutic drug monitoring purposes. Determination of fentanyl concentration can help reduce the prescribed doses, leading to fewer side effects and increased effectiveness. Therefore, predicting free drug concentration in pharmaceutical research is crucial.

View Article and Find Full Text PDF

PEGylated Ultrasmall Iron Oxide Nanoparticles as MRI Contrast Agents for Vascular Imaging and Real-Time Monitoring.

ACS Nano

January 2025

Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.

Accurate imaging evaluations of pre- and post-treatment of cardiovascular diseases are pivotal for effective clinical interventions and improved patient outcomes. However, current imaging methods lack real-time monitoring capabilities with a high contrast and resolution during treatments. This study introduces PEGylated ultrasmall iron oxide nanoparticles (PUSIONPs), which have undergone comprehensive safety evaluations, boasting an value of 6.

View Article and Find Full Text PDF

Introduction: The development of efficient and sustainable catalytic methodolo-gies has garnered considerable attention in contemporary organic synthesis.

Methods: Herein, we present a novel approach employing the Cu@DPP-SPION catalyst for the synthesis of ethyl 4-(aryl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives. This versatile catalytic system incorporates copper nanoparticles supported on 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzoic acid-functionalized superparamagnetic iron oxide nanoparticles (SPIONs).

View Article and Find Full Text PDF

Nanotechnology has emerged as a revolutionary domain with diverse applications in medicine, and one of the noteworthy developments is the exploration of bacterial magnetosomes acquired from magnetotactic bacteria (MTB) for therapeutic purposes. The demand for natural nanomaterials in the biomedical field is continuously increasing due to their biocompatibility and eco-friendly nature. MTB produces uniform, well-ordered magnetic nanoparticles inside the magnetosomes, drawing attention due to their unique and remarkable features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!