Thermoresponsive nanospheres with a regulated diameter and well-defined corona layer.

Langmuir

Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, Japan.

Published: December 2013

In the present work, we prepared core-corona-type nanospheres bearing a thermoresponsive polymer with a controlled chain length on their surface. The corona layers were composed of poly(N-isopropylacrylamide) (PNIPAAm) chains (Mn = 3000-18,000) with a narrow polydispersity index prepared by atom-transfer radical polymerization (ATRP). Nanospheres were prepared by dispersion copolymerization of styrene with the PNIPAAm macromonomer in a polar solvent. The obtained nanospheres were monodisperse in diameter. The diameter of the nanospheres was regulated either by the number or chain length of the PNIPAAm macromonomers. In fact, the nanosphere diameter was regulated from ca. 100 to 1000 nm. When two types of PNIPAAm macromonomers are used, the obtained nanospheres have two different kinds of PNIPAAm on their surface. The surface of the nanospheres was observed to be thermoresponsive nanosphere in 0, 50, 100 mmol L(-1) NaCl aqueous solution. The nanosphere diameter and the surface-grafted polymer were concurrently adjusted for use in biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la4034468DOI Listing

Publication Analysis

Top Keywords

nanospheres regulated
8
chain length
8
pnipaam macromonomers
8
nanosphere diameter
8
nanospheres
6
diameter
5
pnipaam
5
thermoresponsive nanospheres
4
regulated diameter
4
diameter well-defined
4

Similar Publications

Nano-Metal-Organic Frameworks Isolated in Mesoporous Structures.

Adv Mater

January 2025

School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China.

As an alternative to bulk counterparts, metal-organic framework (MOF) nanoparticles isolated within conductive mesoporous carbon matrices are of increasing interest for electrochemical applications. Although promising, a "clean" carbon surface is generally associated with poor compatibility and weak interactions with metal/ligand precursors, which leads to the growth of MOFs with inhomogeneous particle sizes on outer pore walls. Here, a general methodology for in situ synthesis of eight nanoMOF composites within mesochannels with high dispersity and stability are reported.

View Article and Find Full Text PDF

Hepatocyte growth factor (HGF) is a substance that stimulates the proliferation of hepatocytes which promote healing. We developed a macrophage membrane-encapsulated nanosphere drug delivery system containing HGF for the study of burn wound healing. Twenty-seven Sprague-Dawley rats were randomly divided into three groups: a saline control (NS) group, an engineered macrophage membrane-encapsulated nanospheres (ETMM@NPS) group, and an engineered macrophage membrane-encapsulated nanospheres treatment with HGF-loaded gene (HGF@ETMM@NPS) group.

View Article and Find Full Text PDF

Semi-Confinement Effect Enhances CH and CH Production in CO Electrocatalytic Reduction.

Small

January 2025

Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, China.

Achieving fast conversion and precise regulation of product selectivity in electrochemical CO reduction reaction (CORR) remains a challenge. The space confinement effect provides a theoretical basis for the design of catalysts of different morphology and sizes and reveals the physical phenomena caused by the confinement of electrons and other particles at the nanoscale. In this work, a semi-confinement concept is introduced and a mesoporous silica nanosphere supported Cu catalyst (Cu-MSN) is prepared as a typical example to realize CORR enhancement and product selectivity regulation (methane vs ethylene).

View Article and Find Full Text PDF

Severe photogenerated charge carrier recombination involved in photocatalytic CO reduction leads to low photocatalytic efficiency. Here we demonstrate that a chiral hierarchical structure could facilitate charge separation in BiOBr, thus suppressing charge recombination and enhancing photocatalytic performance. Chiral helical flower-like BiOBr nanospheres were prepared a D/L-sorbitol-assisted hydrothermal process, exhibiting a 1.

View Article and Find Full Text PDF

Epstein-Barr nuclear antigen 1 (EBNA1), a sequence-specific DNA binding protein of Epstein-Barr virus (EBV), is essential for viral genome replication and maintenance and is therefore an attractive target for the therapeutic intervention of EBV-associated cancers. Several EBNA1-specific inhibitors have demonstrated the ability to block EBNA1 function in vitro, but practical delivery strategies for these inhibitors in vivo are still lacking. Here, we report an intelligent hierarchical targeting theranostic nanosystem (denoted as mZGOCS@MnO-P5) that integrates an azide (N3) terminal dual-targeting peptide (N3-P5), a tumor microenvironment-responsive degradable MnO nanosheet, and a mesoporous ZnGaO:Cr, Sn near-infrared persistent luminescence (NIR-PL) nanosphere (mZGOCS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!