Dynamic materials from microgel multilayers.

Langmuir

School of Chemistry and Biochemistry and the Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

Published: June 2014

Multilayer coatings made from hydrogel microparticles (microgels) are conceptually very simple materials: thin films composed of microgel building blocks held together by polyelectrolyte "glue". However, the apparent simplicity of their fabrication and structure belies extremely complex properties, including those of "dynamic" coatings that display rapid self-healing behavior in the presence of solvent. This contribution covers our work with these materials and highlights some of the key findings regarding damage mechanisms, healing processes, film structure/composition, and how the variation of fabrication parameters can impact self-healing behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la403058tDOI Listing

Publication Analysis

Top Keywords

self-healing behavior
8
dynamic materials
4
materials microgel
4
microgel multilayers
4
multilayers multilayer
4
multilayer coatings
4
coatings hydrogel
4
hydrogel microparticles
4
microparticles microgels
4
microgels conceptually
4

Similar Publications

PKM2-mediated collagen XVII expression is critical for wound repair.

JCI Insight

January 2025

Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Chronic wounds have emerged as a tough clinical challenge. An improved understanding of wound healing mechanisms is paramount. Collagen XVII (COL17), a pivotal constituent of hemidesmosomes, holds considerable promise for regulating epidermal cell adhesion to the basement membrane, as well as for epidermal cell motility and self-renewal of epidermal stem cells.

View Article and Find Full Text PDF

Photoswitchable Branched Polyurethanes Based on Hexaarylbiimidazole for Photolithography.

Macromol Rapid Commun

January 2025

Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.

Hexaarylbiimidazole (HABI) molecules have awakened a broad interest in photo-processing, super-resolution imaging, photoinduced self-healing materials, and photomechanical hydrogels due to their excellent photosensitivity and photo-induced cleavage properties. In this work, a novel photoswitchable branched polyurethanes (BPU), which are synthesized by copolymerizing HABI with glycerol, isophorone diisocyanate (IPDI), and polyethylene glycol (PEG), is designed. 7-Diethylamino-4-methylcoumarin (DMCO) is introduced as a radical quencher, which can not only avoid the hydroxyl interfering from conventional radical scavengers during the polymerization process but also promote efficient quenching of TPIR radicals.

View Article and Find Full Text PDF

Robust yet Self-Healing Multimodal Actuators Enabled by Noncovalent Assembled Nanostructure.

Nano Lett

January 2025

Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City 542899, China.

In nature, animals can realize multimodal movements such as walking, climbing, and jumping through transformation in locomotor gaits or form for survival, which is highly desired for untethered flexible actuators yet remains challenging. Here, we propose a robust self-healing multimodal actuator enabled by noncovalent assembled nanostructures with elaborate regulation of multistage responsive behaviors. Owing to the dynamic interfacial design between multiple components, the stimulus can be accurately delivered through a "light-heat-force release" pathway, endowing the actuator with diverse motion capabilities and desired jumping ability (27 cm, 34 times body length).

View Article and Find Full Text PDF

Effect of different crosslinking agents on carboxymethyl chitosan-glycyrrhizic acid hydrogel: Characterization and biological activities comparison.

Int J Biol Macromol

January 2025

School of Biomedical and Phamaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Institute for Safflower Industry Research, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization (Ministry of Education), School of Pharmacy, Shihezi University, Shihezi 832003, China. Electronic address:

Hydrogels were widely utilized in biomedical applications, with their mechanical properties and drug release behavior largely dependent on the type and degree of crosslinking. In this study, the effects of anhydrous ferrous chloride (Fe), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS), and polyvinyl alcohol/borax (PVA/Borax) on the properties of carboxymethyl chitosan (CMCS) and glycyrrhizic acid (GA) hydrogels were investigated. The GA-CMCS-based hydrogels (GFC, GEDC, GPBC) were prepared and their Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and rheological properties were analyzed.

View Article and Find Full Text PDF

Introduction: Binge Eating Disorder (BED) has high lifetime prevalence rates, low treatment success rates, and high rates of treatment dissatisfaction, early discontinuation of care, and recurrence. Complementary and integrative health (CIH) interventions (non-mainstream practices used with conventional approaches for whole-person treatment) hold potential to overcome many treatment barriers and improve BED treatment outcomes. Some CIH interventions have empirical support for use in eating disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!