AI Article Synopsis

  • The study explores the importance of thin films with long-range order and optimal π-packing for efficient charge transport in organic field-effect transistors (OFETs).
  • Researchers synthesized furan-containing diketopyrrolopyrrole (DPP) polymers with different side-chain structures, discovering that polymer solubility impacts π-stacking orientation and field-effect mobilities.
  • Findings indicate that promoting nanoscale aggregation through solvent manipulation can enhance the structural properties and mobility of polymer films, suggesting a broader application for improving organic electronic materials.

Article Abstract

Efficient charge carrier transport in organic field-effect transistors (OFETs) often requires thin films that display long-range order and close π-π packing that is oriented in-plane with the substrate. Although some polymers have achieved high field-effect mobility with such solid-state properties, there are currently few general strategies for controlling the orientation of π-stacking within polymer films. In order to probe structural effects on polymer-packing alignment, furan-containing diketopyrrolopyrrole (DPP) polymers with similar optoelectronic properties were synthesized with either linear hexadecyl or branched 2-butyloctyl side chains. Differences in polymer solubility were observed and attributed to variation in side-chain shape and polymer backbone curvature. Averaged field-effect hole mobilities of the polymers range from 0.19 to 1.82 cm(2)/V·s, where PDPP3F-C16 is the least soluble polymer and provides the highest maximum mobility of 2.25 cm(2)/V·s. Analysis of the films by AFM and GIXD reveal that less soluble polymers with linear side chains exhibit larger crystalline domains, pack considerably more closely, and align with a greater preference for in-plane π-π packing. Characterization of the polymer solutions prior to spin-coating shows a correlation between early onset nanoscale aggregation and the formation of films with highly oriented in-plane π-stacking. This effect is further observed when nonsolvent is added to PDPP3F-BO solutions to induce aggregation, which results in films with increased nanostructural order, in-plane π-π orientation, and field-effect hole mobilities. Since nearly all π-conjugated materials may be coaxed to aggregate, this strategy for enhancing solid-state properties and OFET performance has applicability to a wide variety of organic electronic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja4088665DOI Listing

Publication Analysis

Top Keywords

field-effect hole
12
π-π packing
8
oriented in-plane
8
solid-state properties
8
side chains
8
hole mobilities
8
in-plane π-π
8
polymer
6
field-effect
5
films
5

Similar Publications

Organic semiconducting polymers play a pivotal role in the development of field-effect transistors (OFETs) and organic light-emitting diodes (OLEDs), owing to their cost-effectiveness, structural versatility, and solution processability. However, achieving polymers with both high charge carrier mobility (μ) and photoluminescence (PL) quantum yield (Φ) remains a challenge. In this work, we present the design and synthesis of a novel donor-acceptor π-conjugated polymer, TTIF-BT, featuring a di-Thioeno[3,2-b] ThioenoIndeno[1,2-b] Fluorene (TTIF) backbone as the donor component.

View Article and Find Full Text PDF

BN-Acene Ladder with Enhanced Charge Transport for Organic Field-Effect Transistors.

Angew Chem Int Ed Engl

December 2024

Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China.

The in-depth research on the charge transport properties of BN-embedded polycyclic aromatic hydrocarbons (BN-PAHs) still lags far behind studies of their emitting properties. Herein, we report the successfully synthesis of novel ladder-type BN-PAHs (BCNL1 and BCNL2) featuring a highly ordered BCN acene unit, achieved via a nitrogen-directed tandem C-H borylation. Single-crystal X-ray diffraction analysis unambiguously revealed their unique and compact herringbone packing structures.

View Article and Find Full Text PDF

Conjugated polymers (CPs) with polar side chains can conduct electronic and ionic charges simultaneously, making them promising for bioelectronics, electrocatalysis and energy storage. Recent work showed that adding alkyl spacers between CP backbones and polar side chains improved electronic charge carrier mobility, reduced swelling and enhanced stability, without compromising ion transport. However, how alkyl spacers impact polymer backbone conformation and, subsequently, electronic properties remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Tellurium's unique p-type properties and stability have led to renewed interest in its application in semiconductors, particularly in creating high-quality nanoflakes.
  • A new physical vapor deposition method was used to synthesize these Te nanoflakes, achieving a remarkable field-effect hole mobility of 1450 cm/(V s), the highest for 2D p-type semiconductors.
  • The integration of Te with MoS in heterostructures enables the development of photodetectors with impressive characteristics, including high current responsivity and strong gate tunability, outperforming traditional Si-MoS models.
View Article and Find Full Text PDF

Exploring Molecular Descriptors and Acquisition Functions in Bayesian Optimization for Designing Molecules with Low Hole Reorganization Energy.

ACS Omega

December 2024

Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.

Organic semiconductors have been widely studied owing to their potential applications in various devices, such as field-effect transistors, light-emitting diodes, solar cells, and image sensors. However, they have a limitation of significantly lower carrier mobility compared to silicon, which is a widely used inorganic semiconductor. Therefore, to address such limitations, these molecules should be further explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!