Special attention has been given to the mosquito Aedes aegypti Linn. (Diptera: Culicidae) owing to numerous dengue epidemic outbreaks worldwide. Failure to control vector spreading is accounted for unorganized urban growth and resistance to larvicides and insecticides. Therefore, researchers are currently searching for new and more efficient larvicides and insecticides to aid dengue control measures. Triptamine is known to affect insect behavior, development, and physiology. Expression of this compound in plants has reduced the growth rate of herbivore insects. In view of these facts, it was of our interest to synthesize triptamine amide derivatives as potential larvicides against Ae. aegypti, establishing a Structure-Activity Relationship. Eleven amide derivatives of triptamine were synthesized, characterized, and evaluated for their larvicidal activity against third-instar Ae. aegypti larvae. N-(2-(1H-indol-3-yl)ethyl)-2,2,2-trichloroacetamide exhibited the highest overall larvicidal potency, while N-(2-(1H-Indol-3-yl)ethyl) acetamide displayed the lowest larvicidal potency. A regression equation correlating the larvicidal activity with Log P was obtained. We have found a clear relationship between the larvicidal activity of non-chlorinated compounds and Log P. Analysis of the relationship between Log P and larvicidal activity against Ae. aegypti may be useful in the evaluation of potential larvicidal compounds.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573406409666131202144010DOI Listing

Publication Analysis

Top Keywords

larvicidal activity
16
aedes aegypti
8
aegypti linn
8
larvicides insecticides
8
amide derivatives
8
larvicidal potency
8
larvicidal
7
aegypti
5
synthesis activity
4
activity qsar
4

Similar Publications

A series of novel triazone derivatives containing aldehyde hydrazone or ketone hydrazone moieties were designed, synthesized and their biological activities were investigated against , , , , and 14 Kinds of fungi. Most of the aldehyde hydrazone exhibited excellent insecticidal activities against . In particular, the aphicidal activities of compounds (35%) and (30%) were equivalent to pymetrozine (30%) at 5 mg/kg.

View Article and Find Full Text PDF

Recently, there has been a growing demand for plant-based products to treat a range of health conditions. (L.), a member of the Lamiaceae family, is widely known for its versatile therapeutic properties.

View Article and Find Full Text PDF

Background: Owing to their extensive utilization as pesticides, heterocycles assume a fundamental role in the management of vector-borne diseases. Despite the presence of numerous heterocyclic compounds in commercial insecticides and larvicides, resistance to pesticides still demands novel strategies to current pest control methods. Considering these facts, this review aims to survey the synthesis and SAR of heterocyclic molecules with larvicidal activity against Aedes aegypti Linn.

View Article and Find Full Text PDF

Chemical structure-biological activity of 1,4-naphthoquinone analogs as potential Aedes aegypti larvicides.

Pest Manag Sci

January 2025

Department of BioMolecular Sciences and the Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, USA.

Background: 1,4-Naphthoquinone compounds have shown pesticidal activity against Aedes aegypti larvae, a key vector of diseases such as dengue and Zika. However, limited knowledge of their structure-activity relationships has hindered their optimization for pesticide development. This study investigates the structure-activity relationships of 1,4-naphthoquinone, particularly 2-hydroxy-1,4-naphthoquinone and its derivatives.

View Article and Find Full Text PDF

One of the most widespread arboviral diseases in the world, dengue virus disease (DVD) is primarily found in tropical and subtropical regions, affecting 129 countries. The main way that the dengue virus (DENV) spreads is through the bite of a female mosquito. Symptomatic therapy and supportive care are the primary methods of managing patients with DENV infection as there is currently no approved antiviral medication for this condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!