Edible films/coatings have been considered as one of the potential technologies that can be used to increase the storability of foods and to improve the existent packaging technology, helping to ensure the microbial safety and the preservation of food from the influence of external factors. Innovations constantly appear in food packaging, always aiming at creating a more efficient quality preservation system while improving foods' attractiveness and marketability. The utilization of renewable sources for packaging materials, such as hydrocolloids and lipids from biological origin, is one the main trends of the industry. These films should have acceptable sensory characteristics, appropriate barrier properties (CO2, O2, water, oil), microbial, biochemical and physicochemical stability, they should be safe, and produced by simple technology in low cost. Also they can act as effective carrier for antioxidant, flavor, color and nutritional or anti-microbial additives. Nowadays, a great discussion exists about the potential applications of edible films/coatings on food products. The general trend is to find the correct combination between the food product and the edible film/coating, which will ensure the success of the technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/2212798405666131129151640 | DOI Listing |
J Sci Food Agric
January 2025
University of Agricultural Sciences, Bengaluru, India.
Background: The edible seeds of Ocimum gratissimum and Ocimum basilicum were found to be a potent source of phytochemicals with noteworthy antioxidant, antidiabetic, and antimicrobial properties. This study aimed to investigate the impact of germination and extraction solvents (ethanol (EtOH), distilled water) on the therapeutic properties exhibited and the ability of seed extracts to act as natural food preservatives.
Results: The EtOH extracts of germinated O.
Food Chem
April 2025
School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China. Electronic address:
Edible films are significant in prolonging the shelf life of meat products. Herein, we prepared some edible coatings (EW/TNPCSs) based on egg white/chitosan/pectin as polymer matrix, containing tannic acid-nisin composite nano-crosslinker with antibacterial-antioxidant activities. The results of preservation indicated that the prepared EW/TNPCSs reduced the water loss of chilled pork and delayed the changes of taste, texture and surface color.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China. Electronic address:
The shelf-life of grapes is reduced due to infection by various pathogens and mechanical damage, which consequently limits their availability on the market and results huge economic losses. Active packaging films are expected to overcome this problem. In this study, packaging films (CMC-Gly-PMA) were developed using wheat straw-based carboxymethyl cellulose (2 %), glycerol (30 % w/w of CMC) and polymalate (0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department Food Engineering, Universidad de Córdoba, Montería, Colombia. Electronic address:
Recent studies have focused on the generation of biomaterials from natural sources, highlighting the use of starch from different sources to obtain edible films and coatings. In this study, edible films were developed from sweet potato starch, and their potential use in candy packaging was evaluated. Films were prepared by the casting method, and the effects of sweet potato starch (3 %-5 % w/w), glycerol (0.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina, USA.
This review focuses on antimicrobial packaging for food safety, critically examining the activity and efficacy of cannabinoids against commonly found microorganisms and exploring their antimicrobial mechanisms. Specifically, the review considers cannabinoids derived from industrial hemp plants, which are characterized by low levels of psychoactive components. It also outlines viable strategies to control the sustained release of cannabinoids from the packaging, enabling extended storage and enhanced safety of food products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!