Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multicopper oxidase (MCO) is an enzyme which involves in reducing the oxygen in a four electron reduction to water with concomitant one electron oxidation of reducing the substrate. We have generated the 3-D structure of MCO by homology modeling and validated on the basis of free energy while 90.4 % amino acid residues present in allowed regions of Ramachandran plot. The screening of potential hazardous aromatic compounds for MCO was performed using molecular docking. We obtained Sulfonaphthal, Thymolphthalein, Bromocresol green and Phloretin derivatives of phenol and aromatic hydrocarbon were efficient substrates for MCO. The phylogeny of MCO reveals that other bacteria restrain the homologous gene of MCO may play an important role in biodegradation of aromatic compounds. We have demonstrated the gene regulatory network of MCO with other cellular proteins which play a key role in gene regulation. These findings provide a new insight for oxidization of phenolic and aromatic compounds using biodegradation process for controlling environmental pollution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528887 | PMC |
http://dx.doi.org/10.1007/s11693-012-9096-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!