Highly size-selective ionically crosslinked multilayer polymer films for light gas separation.

Adv Mater

Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX, 77843-3122, United States.

Published: February 2014

Exceptionally high hydrogen permselectivity, exceeding that of any polymeric or porous inorganic systems, is achieved using an ionically crosslinked multilayer polymer thin film.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201302177DOI Listing

Publication Analysis

Top Keywords

ionically crosslinked
8
crosslinked multilayer
8
multilayer polymer
8
highly size-selective
4
size-selective ionically
4
polymer films
4
films light
4
light gas
4
gas separation
4
separation exceptionally
4

Similar Publications

Enhanced Interfacial Contact and Lithium-Ion Transport in Ionic Liquid Polymer Electrolyte via In-Situ Electrolyte-Cathode Integration.

Molecules

January 2025

Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Solid polymer electrolytes (SPEs) have attracted much attention due to their excellent flexibility, strong interfacial adhesion, and good processibility. However, the poor interfacial contact between the separate solid polymer electrolytes and electrodes leads to large interfacial impedance and, thus, hinders Li transport. In this work, an ionic liquid-modified comb-like crosslinked network composite solid-state electrolyte with an integrated electrolyte/cathode structure is prepared by in situ ultraviolet (UV) photopolymerization.

View Article and Find Full Text PDF

Marine polysaccharide hydrogels have emerged as an innovative platform for regulating the in vivo release of natural bioactive compounds for medical purposes. These hydrogels, which have exceptional biocompatibility, biodegradability, and high water absorption capacity, create effective matrices for encapsulating different bioactive molecules. In addition, by modifying the physical and chemical properties of marine hydrogels, including cross-linking density, swelling behavior, and response to external stimuli like pH, temperature, or ionic strength, the release profile of encapsulated bioactive compounds is strictly regulated, thus maximizing therapeutic efficacy and minimizing side effects.

View Article and Find Full Text PDF

Peptides can be designed to self-assemble into predefined supramolecular nanostructures, which are then employed as biomaterials in a range of applications, including tissue engineering, drug delivery, and vaccination. However, current self-assembling peptide (SAP) hydrogels exhibit inadequate self-healing capacities and necessitate the use of sophisticated printing apparatus, rendering them unsuitable for 3D printing under physiological conditions. Here, we report a precisely designed charged peptide, Z5, with the object of investigating the impact of electrostatic interactions on the self-assembly and the rheological properties of the resulting hydrogels.

View Article and Find Full Text PDF

Encapsulation in alginate hydrogel microspheres is an effective method for protecting and improving the survival of lactic acid bacteria in different environments. This research aims to expand the knowledge about the structure/property relationship of calcium alginate microspheres loaded with a mixture of autochthonous probiotic bacteria ( and ). A novel hydrogel formulation (FORMLAB) was prepared by ionic gelation and the molecular interactions between the FORMLAB constituents, surface morphology, structure, swelling degree, and release profile were characterized.

View Article and Find Full Text PDF

Natrium Alginate and Graphene Nanoplatelets-Based Efficient Material for Resveratrol Delivery.

Gels

December 2024

Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania.

In this study, alginate-based composite beads were developed for the delivery of resveratrol, a compound with therapeutic potential. Two formulations were prepared: one with sodium alginate and resveratrol (AR) and another incorporating graphene nanoplatelets (AGR) to improve drug release control. The beads were formed by exploiting alginate's ability to gel via ionic cross-linking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!