Accumulation of hepatic lipid droplet (HLD) is the hallmark pathology of non-alcoholic fatty liver disease (NAFLD). This study examined the effects of soy isoflavones (ISF) and different amounts of soy proteins on the accumulation of HLD, lipid metabolism and related gene expression in rats. Weanling Sprague-Dawley rats were fed diets containing either 20 % casein protein without (D1) or with (D2) supplemental ISF (50 mg/kg diet) or substitution of casein with increasing amounts of alcohol-washed soy protein isolate (SPI, 5, 10, and 20 %; D3, D4, D5) for 90 days. Dietary casein (20 %) induced accumulation of HLD in female, but not in male rats. Both soy proteins and ISF remarkably prevented the formation of HLD. Soy proteins lowered hepatic total cholesterol and triglyceride in a dose-dependent manner. Interestingly, soy proteins but not ISF significantly increased free fatty acids in the liver of the female rats compared to D1. Proteomic analysis showed that at least 3 enzymes involved in lipogenesis were down-regulated and 7 proteins related to fatty acid β-oxidation or lipolysis were up-regulated by soy protein over D1. Additionally, 9 differentially expressed proteins identified were related to amino acid metabolism, 5 to glycolysis and 2 to cholesterol metabolism. Dietary ISF and SPI markedly reduced hepatic-peroxisome-proliferator-activated receptor γ2 (PPARγ2) and fat-specific protein 27 (FSP27) in female rats. Overall, this study has shown that partial or full replacement of dietary casein by soy protein or supplementation with soy ISF can effectively prevent the accumulation of HLD. The potential molecular mechanism(s) involved might be due to suppression of lipogenesis and stimulation of lipolysis and down-regulation of PPARγ2 and FSP27. This suggests that consumption of soy foods or supplements might be a useful strategy for the prevention or treatment of fatty liver diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896634PMC
http://dx.doi.org/10.1007/s12263-013-0373-3DOI Listing

Publication Analysis

Top Keywords

soy proteins
20
soy
12
accumulation hld
12
soy protein
12
supplementation soy
8
soy isoflavones
8
hepatic lipid
8
lipid droplet
8
lipid metabolism
8
fatty liver
8

Similar Publications

Biomass-Based Microbial Protein Production: A Review of Processing and Properties.

Front Biosci (Elite Ed)

December 2024

Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA.

A rise in population and societal changes have increased pressure on resources required to meet the growing demand for food and changing dietary preferences. The increasing demand for animal protein is concerning and raises questions regarding sustainability due to its environmental impact. Subsequently, scientists seek alternative proteins, such as microbial proteins (MPs), as an environmentally friendly choice.

View Article and Find Full Text PDF

Phytochrome-interacting factors (PIFs) belong to a subfamily of the bHLH transcription factor family and play a pivotal role in plant light signal transduction, hormone signal pathways, and the modulation of plant responses to various abiotic stresses. The soybean (Glycine max) is a significant food crop, providing essential oil and nutrients. Additionally, it is a vital industrial raw material and a lucrative cash crop.

View Article and Find Full Text PDF

The beta-rhizobial strain Paraburkholderia phymatum STM815 is noteworthy for its wide host range in nodulating legumes, primarily mimosoids (over 50 different species) but also some papilionoids. It cannot, however, nodulate soybean (Glycine max [L.] Merr.

View Article and Find Full Text PDF

Soybean bioactive peptide supplementation improves gut health and metabolism in broiler chickens.

Poult Sci

December 2024

Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, PR China. Electronic address:

This study aimed to investigate the effects of soybean bioactive peptide (SBP) on the growth performance and intestinal health of yellow-feathered broilers and to further elucidate the regulatory mechanisms of intestinal health using multi-omics analysis. A total of 320 1-day-old yellow-feathered broilers were randomly divided into two groups, with 10 replicates per group and 16 birds per replicate. Broilers in the control group received the basal diet, and those in the experimental group (SBPG) received the basal diet with 0.

View Article and Find Full Text PDF

OsWRKY49 on qAT5 positively regulates alkalinity tolerance at the germination stage in Oryza sativa L. ssp. japonica.

Theor Appl Genet

December 2024

Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.

Integrated genome-wide association study and linkage mapping revealed genetic basis of alkalinity tolerance during rice germination. The key gene OsWRKY49 was further verified in transgenic plants. With the widespread use of the rice direct seeding cultivation model, improving the tolerance of rice varieties to salinity-alkalinity at the germination stage has become increasingly important.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!