Lipid rafts are related to cell surface receptor function. Integrin is a major surface receptor protein in cell adhesion and migration on the extracellular matrix (ECM). Here, we showed that lipid rafts played a critical role in human melanoma A375 cell spreading and migration on fibronectin; an important component of the ECM that interacts with β1 integrin. We found that the disruption of lipid rafts did not markedly inhibit the expression and activation of β1 integrin. By coimmunoprecipitation and mass spectrometry, we investigated the influence of lipid rafts on the β1 integrin complex and identified nucleolin as a potential lipid-raft-dependent β1-integrin-interacting protein. Upon confirmation of the interaction between β1 integrin and nucleolin, further studies revealed that nucleolin colocalized with β1 integrin in lipid rafts and raft disruption interrupted their association. In addition, knockdown of nucleolin markedly attenuated A375 cell spreading and migration on fibronectin. Taken together, we demonstrated that nucleolin is a critical lipid-raft-dependent β1-integrin-interacting protein in A375 cell spreading and migration on fibronectin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887962PMC
http://dx.doi.org/10.1007/s10059-013-0149-zDOI Listing

Publication Analysis

Top Keywords

lipid rafts
20
β1 integrin
20
a375 cell
16
lipid-raft-dependent β1-integrin-interacting
12
β1-integrin-interacting protein
12
cell spreading
12
spreading migration
12
migration fibronectin
12
protein a375
8
surface receptor
8

Similar Publications

Flotillins in membrane trafficking and physiopathology.

Biol Cell

January 2025

CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), BIOLuM, University of Montpellier, CNRS UMR 5237, Montpellier, France.

Flotillin 1 and 2 are highly conserved and homologous members of the stomatin, prohibitin, flotillin, HflK/C (SPFH) family. These ubiquitous proteins assemble into hetero-oligomers at the cytoplasmic membrane in sphingolipid-enriched domains. Flotillins play crucial roles in various cellular processes, likely by concentrating sphingosine.

View Article and Find Full Text PDF

Introduction: Iron-mediated cell death (ferroptosis) is a proposed mechanism of Alzheimer's disease (AD) pathology. While iron is essential for basic biological functions, its reactivity generates oxidants which contribute to cell damage and death.

Methods: To further resolve mechanisms of iron-mediated toxicity in AD, we analyzed post mortem human brain and ApoEFAD mice.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) particle assembly occurs on the surface of infected cells at specialized membrane domain called lipid rafts. The mature RSV particles assemble as filamentous projections called virus filaments, and these structures form on the surface of many permissive cell types indicating that this is a robust feature of the RSV particle assembly. The virus filaments also form on nasal airway organoids systems providing evidence that these structures also have a clinical relevance.

View Article and Find Full Text PDF

Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome.

View Article and Find Full Text PDF

Lipid Rafts in Signalling, Diseases, and Infections: What Can Be Learned from Fluorescence Techniques?

Membranes (Basel)

January 2025

Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D'Alcontres 31, 98166 Messina, Italy.

Lipid rafts are dynamic microdomains in the membrane, rich in cholesterol and sphingolipids, that are critical for biological processes like cell signalling, membrane trafficking, and protein organization. Their essential role is claimed in both physiological and pathological conditions, including cancer, neurodegenerative diseases, and viral infections, making them a key area of research. Fluorescence-based approaches, including super-resolution fluorescence microscopy techniques, enable precise analysis of the organization, dynamics, and interactions of these microdomains, thanks also to the innovative design of appropriate fluorescent probes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!