Botulinum toxin A (BTX)-induced muscle paralysis results in pronounced bone degradation with substantial bone loss. We hypothesized that whole-body vibration (WBV) and insulin-like growth factor-I (IGF-I) treatment can counteract paralysis-induced bone degradation following BTX injections by activation of the protein kinase B (Akt) signaling pathway. Female C57BL/6 mice (n = 60, 16 weeks) were assigned into six groups (n = 10 each): SHAM, BTX, BTX+WBV, BTX+IGF-I, BTX+WBV+IGF-I, and a baseline group, which was killed at the beginning of the study. Mice received a BTX (1.0 U/0.1 mL) or saline (SHAM) injection in the right hind limb. The BTX+IGF-I and BTX+WBV+IGF-I groups obtained daily subcutaneous injections of human IGF-I (1 μg/day). The BTX+WBV and BTX+WBV+IGF-I groups underwent WBV (25 Hz, 2.1 g, 0.83 mm) for 30 min/day, 5 days/week for 4 weeks. Femora were scanned by pQCT, and mechanical properties were determined. On tibial sections TRAP staining, static histomorphometry, and immunohistochemical staining against Akt, phospho-Akt, IGF-IR (IGF-I receptor), and phospho-IGF-IR were conducted. BTX injection decreased trabecular and cortical bone mineral density. The WBV and WBV+IGF-I groups showed no difference in trabecular bone mineral density compared to the SHAM group. The phospho-IGF-IR and phospho-Akt stainings were not differentially altered in the injected hind limbs between groups. We found that high-frequency, low-magnitude WBV can counteract paralysis-induced bone loss following BTX injections, while we could not detect any effect of treatment with IGF-I.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00223-013-9818-3 | DOI Listing |
Front Endocrinol (Lausanne)
June 2022
Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.
Increased incidence of bone fractures in the elderly is associated with gradual sarcopenia. Similar deterioration of bone quality is seen with prolonged bed rest, spinal cord injuries or in astronauts exposed to microgravity and, preceded by loss of muscle mass. Signaling mechanisms involving uridine-5'-triphosphate (UTP) regulate bone homeostasis P2Y receptors on osteoblasts and osteoclasts, whilst dictating the bone cells' response to mechanical loading.
View Article and Find Full Text PDFBiomech Model Mechanobiol
June 2021
Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
Muscle paralysis induced with botulinum toxin (Botox) injection increases vascular porosity and reduces osteocyte lacunar density in the tibial cortical bone of skeletally mature rats. These morphological changes potentially affect interstitial fluid flow in the lacunar-canalicular porosity, which is thought to play a role in osteocyte mechanotransduction. The aim of this study was to investigate the effects of disuse-induced morphological changes on interstitial fluid velocity around osteocytes in the bone cortex.
View Article and Find Full Text PDFJ Oral Rehabil
March 2019
Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
Background: Masseter muscle function influences mandibular bone homeostasis. As previously reported, bone resorption markers increased in the mouse mandibular condyle two days after masseter paralysis induced with botulinum toxin type A (BoNTA), followed by local bone loss.
Objective: This study aimed to evaluate the bone quality of both the mandibular condyle and alveolar process in the mandible of adult mice during the early stage of a BoNTA-induced masseter muscle atrophy, using a combined 3D histomorphometrics and shape analysis approach.
Ann Anat
March 2018
Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Chile. Electronic address:
Background: Masseter muscle paralysis induced by botulinum toxin type A (BoNTA) evokes subchondral bone loss in mandibular heads of adult rats and growing mice after 4 weeks. However, the primary cellular and molecular events leading to altered bone remodeling remain unexplored. Thus, the aim of the current work has been to assess the molecular response that precedes the early microanatomical changes in the masseter muscle and subchondral bone of the mandibular head in adult mice after BoNTA intervention.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
November 2017
Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington; and.
Transient muscle paralysis engendered by a single injection of botulinum toxin A (BTxA) rapidly induces profound focal bone resorption within the medullary cavity of adjacent bones. While initially conceived as a model of mechanical disuse, osteoclastic resorption in this model is disproportionately severe compared with the modest gait defect that is created. Preliminary studies of bone marrow following muscle paralysis suggested acute upregulation of inflammatory cytokines, including TNF-α and IL-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!