Adenoviruses have increasingly been recognized as significant viral pathogens causing high morbidity and mortality especially among immunocompromised individuals such as transplant recipients and AIDS patients. Through the infection process, after the adenovirus fiber and penton are bonded to cell surface receptors through special amino acid moieties, secondary messengers activate protein kinases, pro-inflammatory cytokines and chemokines. Serotype and species specific antibodies also are induced. Recombinant human adenoviruses have been pivotal in the development of gene therapy strategies and have shown a great promise for the treatment of genetic disorders and malignancies. Recent studies have enlightened their harmful immunological effects dependent on fiber and hexon polypeptide structure and receptor binding. Pre-existing antibodies or those elicited by vectors neutralize input recombinant adenovirus particles rendering them ineffective. Mediators induce serious even lethal side effects and cytotoxic reactions which extinguish transgene expression. To overcome these difficulties new strategies are required in the application of recombinant adenoviruses to redirect vector entry from the natural receptors to alternative binding sites or using rare human or animal adenovirus fiber molecules to modify the native fiber structure by altering amino acid structure and creating chimeric fibers. This requires searching for, isolating and characterizing new serotypes, mutants or variants for new generation vectors. Human adenovirus 1 feline isolate (feline adenovirus) might fulfil these criteria.

Download full-text PDF

Source
http://dx.doi.org/10.1556/AMicr.60.2013.4.6DOI Listing

Publication Analysis

Top Keywords

gene therapy
8
adenovirus fiber
8
amino acid
8
adenovirus
5
immunochemistry adenoviruses
4
adenoviruses limitations
4
limitations horizons
4
horizons gene
4
therapy adenoviruses
4
adenoviruses increasingly
4

Similar Publications

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

L-carnitine protects against oxidative damage and neuroinflammation in cerebral cortex of rats submitted to chronic chemically-induced model of hyperphenylalaninemia.

Metab Brain Dis

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

Progress report on multiple endocrine neoplasia type 1.

Fam Cancer

January 2025

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Multiple endocrine neoplasia type 1 (MEN1) syndrome is an autosomal dominant disorder caused by a germline pathogenic variant in the MEN1 tumor suppressor gene. Patients with MEN1 have a high risk for primary hyperparathyroidism (PHPT) with a penetrance of nearly 100%, pituitary adenomas (PitAd) in 40% of patients, and neuroendocrine neoplasms (NEN) of the pancreas (40% of patients), duodenum, lung, and thymus. Increased MEN1-related mortality is mainly related to duodenal-pancreatic and thymic NEN.

View Article and Find Full Text PDF

Purpose: Patients with partial or complete DPD deficiency have decreased capacity to degrade fluorouracil and are at risk of developing toxicity, which can be even life-threatening.

Case: A 43-year-old man with moderately differentiated rectal adenocarcinoma on capecitabine presented to the emergency department with complaints of nausea, vomiting, diarrhea, weakness, and lower abdominal pain for several days. Laboratory findings include grade 4 neutropenia (ANC 10) and thrombocytopenia (platelets 36,000).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!