This study used severe cold rolling followed by cold swaging of β Ti-33.6% Nb-4% Sn rods to form a characteristic fiber structure composed of stress-induced α″ martensite with <010> texture and a β phase with <101> texture, resulting in a material with a low Young's modulus of 40GPa. The material's tensile strength of 1270MPa and fatigue strength of 850MPa were attained by heat treatment at 673K for 5h through fine α precipitation in the fiber structure. A new method of fabricating a high-performance hip prosthetic stem was investigated based on the low Young's modulus and high strength obtained. After fabricating the stem by cold rolling, cold swaging, cold die-forging and machining, its neck region was given higher strength through local heat treatment, while the low Young's modulus remained almost unchanged in a distal portion of the stem. When a stem tip in the distal part was heat treated at 423K, reverse α″→β transformation occurred and the tangent modulus decreased to less than 30GPa, accompanied by stress-induced β→α″. It was concluded that the method presented herein provided a low Young's modulus of approximately 40GPa in the distal part and high fatigue strength of approximately 850MPa in the neck region of a high-performance hip prosthetic stem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2013.11.002 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
The ongoing soft actuation has accentuated the demand for dielectric elastomers (DEs) capable of large deformation to replace the traditional rigid mechanical apparatus. However, the low actuation strain of DEs considerably limits their practical applications. This work developed high-performance polyurethane-urea (PUU) elastomers featuring large actuation strains utilizing an approach of kinetic control over the microphase separation structure during the fabrication process.
View Article and Find Full Text PDFHeliyon
December 2024
Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany.
Subject-specific finite element (FE) modeling of the mandible bone has recently gained attention for its higher accuracy. A critical modeling factor is including personalized material properties from medical images especially when bone quality has to be respected. However, there is no consensus on the material model for the mandible that realistically estimates the Young's modulus of the bone.
View Article and Find Full Text PDFHyperelastic materials are extensively incorporated in medical implants and microelectromechanical systems due to their large, elastic, recoverable strains. However, their mechanical properties are sensitive to processing parameters that may lead to inconsistent characterization. Various test setups have been employed for characterizing hyperelastic materials; however, they are often costly.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur 416006, India. Electronic address:
Managing wounds and accompanying consequences like exudation and microbiological infections is challenging in clinical practice. Bioactive compounds from traditional medicinal plants help heal wounds, although their bioavailability is low. This study uses sodium alginate (SA), gelatin (G), and Santalum album oil (SAL) to 3D print a polymeric hydrogel scaffold to circumvent these difficulties.
View Article and Find Full Text PDFJ Ultrasound Med
January 2025
Department of Radiology, Mayo Clinic Arizona, Phoenix, Arizona, USA.
Objectives: To combine sonographic Murphy sign (SMS) with clinical parameters to effectively stratify patients into risk groups for acute cholecystitis.
Methods: Consecutive emergency department patients from April 1, 2019 to August 31, 2022 with possible acute cholecystitis were grouped using patient age, sex, and white blood cell count to determine the rate of acute cholecystitis found in subgroups. Three distinct clinical risk groups were established and then regrouped by prospective assessment of SMS into three non-imaging risk groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!