Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services.

Sci Total Environ

Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France.

Published: February 2014

Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable. This paper takes a step forward and is aimed at demonstrating the feasibility of using an integrated earth system dynamic modeling perspective to retrieve time- and scenario-dependent CFs that consider the complex interlinkages between natural processes delivering ES. The GUMBO (Global Unified Metamodel of the Biosphere) model is used to quantify changes in ES production in physical terms - leading to midpoint CFs - and changes in human welfare indicators, which are considered here as endpoint CFs. The interpretation of the obtained results highlights the key methodological challenges to be solved to consider this approach as a robust alternative to the mainstream rationale currently adopted in LCIA. Further research should focus on increasing the granularity of environmental interventions in the modeling tools to match current standards in LCA and on adapting the conceptual approach to a spatially-explicit integrated model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2013.10.099DOI Listing

Publication Analysis

Top Keywords

integrated earth
8
earth system
8
system dynamic
8
dynamic modeling
8
life cycle
8
cycle impact
8
impact assessment
8
ecosystem services
8
lcia focus
8
cfs
5

Similar Publications

Conventional power generation methods have led to adverse environmental impacts. Thus, the need for a strategic transition to alternative energy sources arises. This study presents a comprehensive approach to sustainable solar energy deployment using multi-criteria decision-making (MCDM) techniques.

View Article and Find Full Text PDF

Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.

View Article and Find Full Text PDF

Rapid growth in bio-logging-the use of animal-borne electronic tags to document the movements, behaviour, physiology and environments of wildlife-offers opportunities to mitigate biodiversity threats and expand digital natural history archives. Here we present a vision to achieve such benefits by accounting for the heterogeneity inherent to bio-logging data and the concerns of those who collect and use them. First, we can enable data integration through standard vocabularies, transfer protocols and aggregation protocols, and drive their wide adoption.

View Article and Find Full Text PDF

As freshwater lakes undergo rapid anthropogenic change, long-term studies reveal key microbial dynamics, evolutionary shifts and biogeochemical interactions, yet the vital role of viruses remains overlooked. Here, leveraging a 20 year time series from Lake Mendota, WI, USA, we characterized 1.3 million viral genomes across time, seasonality and environmental factors.

View Article and Find Full Text PDF

In this study, we explore the photovoltaic performance of an innovative high efficiency heterostructure utilizing the quaternary semiconductor CuFeSnSe (CFTSe). This material features a kesterite symmetrical structure and is distinguished by its non-toxic nature and abundant presence in the earth's crust. Utilizing the SCAPS simulator, we explore various electrical specifications such as short circuit current (J), open circuit voltage (V), the fill factor (FF), and power conversion efficiency (PCE) were explored at a large range of thicknesses, and the acceptor carrier concentration doping (N).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!