A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative proteomics reveals association of early accumulated proteins in conferring butachlor tolerance in three N(2)-fixing Anabaena spp. | LitMetric

Unlabelled: Butachlor an extensively used rice field herbicide negatively affects the cyanobacterial proliferation, yet the molecular mechanism underlying its toxicity in diazotrophic cyanobacteria is largely unknown. The present study focuses on the comparative proteomics to decode the molecular basis of butachlor toxicity/tolerance in three Anabaena species e.g. Anabaena sp. PCC 7120, Anabaena doliolum and Anabaena L31. 75 differentially expressed proteins from each Anabaena sp. included those involved in photosynthesis, C, N and protein metabolism, redox homeostasis, and signal transduction. While early accumulated proteins related to photosynthesis (atpA, atpB), carbon metabolism (glpx, fba and prk), protein folding (groEL, PPIase), regulation (orrA) and other function (OR, akr) appeared crucial for tolerance of Anabaena L31, the late accumulated proteins in Anabaena 7120 presumably offer acclimation during prolonged exposure to butachlor. Contrary to the above, a multitude of down-accumulated proteins vis-a-vis metabolisms augment sensitivity of A. doliolum to butachlor. A cluster of high abundant proteins (atpA, groEL, OR, AGTase, Alr0803, Alr0806, Alr3090, Alr3199, All4050 and All4051) common across the three species may be taken as markers for butachlor tolerance and deserve exploitation for stress management and transgenic development.

Biological Significance: Cyanobacteria offer an eco-friendly alternative to chemical fertilizers for increasing productivity, especially in rice cultivation. This study is the first to compare the proteome of three diazotrophic cyanobacteria subjected to butachlor, a pre-emergent herbicide extensively used in rice paddy. Changes in protein dynamics over time along with physiological and biochemical attributes clearly provide a comprehensive overview on differential tolerance of Anabaena species to butachlor. Molecular docking further added a new dimension in identification of potential protein candidates for butachlor stress management in cyanobacteria. This study strongly recommends combined application of Anabaena spp. A. L31 and A. PCC7120 as biofertilizer in paddy fields undergoing butachlor treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2013.11.015DOI Listing

Publication Analysis

Top Keywords

accumulated proteins
12
butachlor
10
anabaena
10
comparative proteomics
8
early accumulated
8
butachlor tolerance
8
anabaena spp
8
extensively rice
8
diazotrophic cyanobacteria
8
anabaena species
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!