Does microbial centimeter-scale heterogeneity impact MCPA degradation in and leaching from a loamy agricultural soil?

Sci Total Environ

Geological Survey of Denmark and Greenland, Department of Geochemistry, Øster Voldgade 10, DK-1350 Copenhagen, Denmark.

Published: February 2014

The potential for pesticide degradation varies greatly at the centimeter-scale in agricultural soil. Three dimensional numerical simulations were conducted to evaluate how such small-scale spatial heterogeneity may affect the leaching of the biodegradable pesticide 2-methyl-4-chlorophenoxyacetic acid (MCPA) in the upper meter of a variably-saturated, loamy soil profile. To incorporate realistic spatial variation in degradation potential, we used data from a site where 420 mineralization curves over 5 depths have been measured. Monod kinetics was fitted to the individual curves to derive initial degrader biomass values, which were incorporated in a reactive transport model to simulate heterogeneous biodegradation. Six scenarios were set up using COMSOL Multiphysics to evaluate the difference between models having different degrader biomass distributions (homogeneous, heterogeneous, or no biomass) and either matrix flow or preferential flow through a soil matrix with a wormhole. MCPA leached, within 250 days, below 1m only when degrader biomass was absent and preferential flow occurred. Both biodegradation in the plow layer and the microbially active lining of the wormhole contributed to reducing MCPA-leaching below 1m. The spatial distribution of initial degrader biomass within each soil matrix layer, however, had little effect on the overall MCPA-leaching.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2013.11.009DOI Listing

Publication Analysis

Top Keywords

degrader biomass
16
initial degrader
8
preferential flow
8
soil matrix
8
biomass
5
microbial centimeter-scale
4
centimeter-scale heterogeneity
4
heterogeneity impact
4
impact mcpa
4
mcpa degradation
4

Similar Publications

Co-metabolism of Norfloxacin by Chlorella pyrenoidosa: Carbon source effects, biotransformation mechanisms, and key driving genes.

J Hazard Mater

December 2024

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China.

Co-metabolism with appropriate carbon sources has been demonstrated to effectively enhance the removal of ubiquitous recalcitrant micropollutant by microalgae. However, the specific impacts of carbon sources on the co-metabolism of antibiotics by microalgae remain insufficiently explored. In this study, transcriptomics, gene network analysis, extracellular polymeric substances (EPS), and enzymatic activity involved in co-metabolic pathways of norfloxacin (NFX), were systematically evaluated to investigate the underlying biological mechanisms involved in NFX co-metabolism by Chlorella pyrenoidosa.

View Article and Find Full Text PDF

Acetogenic bacteria play an important role in various biotechnological processes, because of their chemolithoautotrophic metabolism converting carbon dioxide with molecular hydrogen (H) as electron donor into acetate. As the main factor limiting acetogenesis is often H, insights into the H consumption kinetics of acetogens are required to assess their potential in biotechnological processes. In this study, initial H consumption rates at a range of different initial H concentrations were measured for three different acetogens.

View Article and Find Full Text PDF

Microalgae for bioremediation: advances, challenges, and public perception on genetic engineering.

BMC Plant Biol

December 2024

Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus Universitario de Rabanales, Ed. C6, Planta Baja, Córdoba, 14071, Spain.

The increase in the global population and industrial activities has led to an extensive use of water, the release of wastewater, and overall contamination of the environment. To address these issues, efficient treatment methods have been developed to decrease wastewater nutrient content and contaminants. Microalgae are a promising tool as a sustainable alternative to traditional wastewater treatment.

View Article and Find Full Text PDF

Understanding the triacylglycerol-based carbon anabolic differentiation in Cyperus esculentus and Cyperus rotundus developing tubers via transcriptomic and metabolomic approaches.

BMC Plant Biol

December 2024

College of Agronomy and Biotechnology, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.

Background: Yellow nutsedge (Cyperus esculentus, known as 'YouShaDou' in China, YSD) and purple nutsedge (Cyperus rotundus, known as 'XiangFuZi' in China, XFZ), closely related Cyperaceae species, exhibit significant differences in triacylglycerol (TAG) accumulation within their tubers, a key factor in carbon flux repartitioning that highly impact the total lipid, carbohydrate and protein metabolisms. Previous studies have attempted to elucidate the carbon anabolic discrepancies between these two species, however, a lack of comprehensive genome-wide annotation has hindered a detailed understanding of the underlying molecular mechanisms.

Results: This study utilizes transcriptomic analyses, supported by a comprehensive YSD reference genome, and metabolomic profiling to uncover the mechanisms underlying the major carbon perturbations between the developing tubers of YSD and XFZ germplasms harvested in Yunnan province, China, where the plant biodiveristy is renowned worldwide and may contain more genetic variations relative to their counterparts in other places.

View Article and Find Full Text PDF

Recovery in soil carbon stocks but reduced carbon stabilization after near-natural restoration in degraded alpine meadows.

Sci Rep

December 2024

Grassland Technique Extension Station of Gansu Province, Lanzhou, 730000, Gansu, China.

Near-natural restoration is acknowledged as an effective strategy for enhancing soil organic carbon (SOC) sequestration in degraded grasslands. However, the alterations in SOC fractions, stability, and relative sequestration capacity after restoration of degraded alpine meadows remain uncertain. In this study, we utilized the degraded alpine meadows on the northeastern edge of the Tibetan Plateau as a research area, with grazing as the control (CK) and restoration of 20 years of banned grazing (BG) and growing season resting grazing (RG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!