Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32±0.16 M(-1) s(-1) and 0.34±0.15 s(-1), respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1±0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a "peroxygenase"-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min(-1) at pH 6.0.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896955PMC
http://dx.doi.org/10.1016/j.bbrc.2013.11.084DOI Listing

Publication Analysis

Top Keywords

oxidation acrylonitrile
16
acrylonitrile binding
12
cytochrome peroxidase
12
ferric heme
12
heme proteins
12
acrylonitrile
9
binding cytochrome
8
ccp compound
8
binding
7
heme
5

Similar Publications

Influence of Kazakhstan's Shungites on the Physical-Mechanical Properties of Nitrile Butadiene Rubber Composites.

Polymers (Basel)

November 2024

Center of Physical Chemical Methods of Research and Analysis, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050038, Kazakhstan.

Article Synopsis
  • This study investigates the use of shungite ore and its concentrate from Kazakhstan as fillers in nitrile butadiene rubber composites.
  • The flotation process significantly increased the carbon content in shungite while reducing silicon oxide, impacting the physical and mechanical properties of the rubber.
  • Results showed that replacing carbon black with shungite improved certain properties of the rubber, such as reduced viscosity and increased tensile strength, without significantly affecting oil resistance.
View Article and Find Full Text PDF

Sodium alginate (SA) was grafted to poly (acrylonitrile-co‑sodium acrylate-co-acrylic acid). The grafted copolymer was crosslinked with N. N, methylene bis acrylamide (MBA).

View Article and Find Full Text PDF

This study details the development and evaluation of sodium alginate-Poly(acrylonitrile-co-styrene)/ Carbon Nanotubes (SA-M*Poly(AN-co-ST)/CNTs) composite beads serve as a highly effective adsorbent for the removal of Fe(II) ions from water solutions. The composite was prepared through the modification and functionalization of poly(acrylonitrile-co-styrene) copolymer with carboxylic acid groups, Subsequently, carbon nanotubes (CNTs) and sodium alginate were integrated to create sturdy gel beads. The composite beads were characterized using SEM, FTIR, and BET surface analysis spectroscopy, revealing a specific surface area of 127.

View Article and Find Full Text PDF

The development of polymeric nanoparticles (NPs) from preformed polymers usually requires the use of organic solvents and is more expensive. Hence, in this work, the development of polymeric nanoparticles by in situ aqueous dispersion polymerization from the monomers was set as an objective. Acrylonitrile monomer based polymeric NPs comprising Lamivudine (LMV) as a model drug were prepared using the aqueous dispersion polymerization technique.

View Article and Find Full Text PDF

Revisiting the Enhanced Chemical Reactivity in Water Microdroplets: The Case of a Diels-Alder Reaction.

J Am Chem Soc

November 2024

Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Often, chemical reactions are markedly accelerated in microdroplets compared with the corresponding bulk phase. While identifying the precise causative factors remains challenging, the interfacial electric field (IEF) and partial solvation are the two widely proposed factors, accounting for the acceleration or turning on of many reactions in microdroplets. In sharp contrast, this combined computational and experimental study demonstrates that these two critical factors have a negligible effect on promoting a model Diels-Alder (DA) reaction between cyclopentadiene and acrylonitrile in water microdroplets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!