In molluscs, the shell organic matrix comprises a large set of biomineral-occluded proteins, glycoproteins and polysaccharides that are secreted by the calcifying mantle epithelium, and are supposed to display several functions related to the synthesis of the shell. In the present paper, we have characterized biochemically the shell matrix associated to the crossed-lamellar structure of the giant queen conch Strombus gigas. The acid-soluble (ASM) and acid-insoluble (AIM) matrices represent an extremely minor fraction of the shell. Both are constituted of polydisperse and of few discrete proteins among which three fractions, obtained by preparative SDS-PAGE and named 1P3, 2P3 and 3P3, are dominant and were further characterized. Compared to other matrices, the acid-soluble matrix is weakly glycosylated (3%) and among the discrete components, only 3P3 seems noticeably glycosylated. The monosaccharide composition of the ASM shows that mannose represents the main monosaccharide. To our knowledge, this is the first report of a high ratio of this sugar in a skeletal matrix. Furthermore, the ASM interacts with the in vitro crystallization of calcium carbonate, but this interaction is moderate. It differs from that of the isolated 1P3 fraction but is similar to that of the 2P3 and 3P3 fractions. At last, antibodies developed from the 3P3 fraction were used to localize this fraction within the shell by immunogold. This study is the first one aiming at characterizing the organic matrix associated to the crossed-lamellar structure of the queen conch shell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpb.2013.11.009 | DOI Listing |
Polymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Mechanical and Vehicle Engineering, Jilin Engineering Normal University, Changchun 130052, China.
The rapid detection of petroleum hydrocarbons and organic pesticides is an important prerequisite for precise soil management. It is also a guarantee for soil quality, environmental safety, and human health. However, the current rapid detection methods are prone to sample matrix interference, complex development processes, short lifespan, and low detection accuracy.
View Article and Find Full Text PDFMolecules
January 2025
Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium dioxide (TiO NC), synthesized by a simple hydrothermal method, on the photodegradation efficiency of three different classes of emerging environmental pollutants: phenol, pesticides (methomyl), and drugs (sodium diclofenac). Experiments were conducted to assess the influence of the water matrix on treatment efficiency by using ultrapure water and stormwater (basic) collected from an urban drainage system as matrices.
View Article and Find Full Text PDFMolecules
January 2025
Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA.
Emerging contaminants (ECs), encompassing pharmaceuticals, personal care products, pesticides, and industrial chemicals, represent a growing threat to ecosystems and human health due to their persistence, bioaccumulation potential, and often-unknown toxicological profiles. Addressing these challenges necessitates advanced analytical tools capable of detecting and quantifying trace levels of ECs in complex environmental matrices. This review highlights the pivotal role of mass spectrometry (MS) in monitoring ECs, emphasizing its high sensitivity, specificity, and versatility across various techniques such as Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-Mass Spectrometry (LC-MS), and High-Resolution Mass Spectrometry (HR-MS).
View Article and Find Full Text PDFMolecules
January 2025
Institute for Organic Synthesis and Photoreactivity of the Italian National Research Council, Area della Ricerca di Bologna, Via P. Gobetti, 101, 40129 Bologna, Italy.
The utilization of the homogeneous ()-2-pyrrolidine-tetrazole organocatalyst (Ley catalyst) in the self-condensation of ethyl pyruvate and cross-aldol reactions of ethyl pyruvate donor with non-enolizable pyruvate acceptors, namely the sterically hindered ethyl 3-methyl-2-oxobutyrate or the highly electrophilic methyl 3,3,3-trifluoropyruvate, is described as the key enantioselective step toward the synthesis of the corresponding biologically relevant isotetronic acids featuring a quaternary carbon functionalized with ester and alkyl groups. The transition from homogeneous to heterogeneous flow conditions is also investigated, detailing the fabrication and operation of packed-bed reactors filled with a silica-supported version of the pyrrolidine-tetrazole catalyst (SBA-15 as the matrix).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!