Background: Deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures (DOORS) syndrome is a rare autosomal recessive disorder of unknown cause. We aimed to identify the genetic basis of this syndrome by sequencing most coding exons in affected individuals.

Methods: Through a search of available case studies and communication with collaborators, we identified families that included at least one individual with at least three of the five main features of the DOORS syndrome: deafness, onychodystrophy, osteodystrophy, intellectual disability, and seizures. Participants were recruited from 26 centres in 17 countries. Families described in this study were enrolled between Dec 1, 2010, and March 1, 2013. Collaborating physicians enrolling participants obtained clinical information and DNA samples from the affected child and both parents if possible. We did whole-exome sequencing in affected individuals as they were enrolled, until we identified a candidate gene, and Sanger sequencing to confirm mutations. We did expression studies in human fibroblasts from one individual by real-time PCR and western blot analysis, and in mouse tissues by immunohistochemistry and real-time PCR.

Findings: 26 families were included in the study. We did exome sequencing in the first 17 enrolled families; we screened for TBC1D24 by Sanger sequencing in subsequent families. We identified TBC1D24 mutations in 11 individuals from nine families (by exome sequencing in seven families, and Sanger sequencing in two families). 18 families had individuals with all five main features of DOORS syndrome, and TBC1D24 mutations were identified in half of these families. The seizure types in individuals with TBC1D24 mutations included generalised tonic-clonic, complex partial, focal clonic, and infantile spasms. Of the 18 individuals with DOORS syndrome from 17 families without TBC1D24 mutations, eight did not have seizures and three did not have deafness. In expression studies, some mutations abrogated TBC1D24 mRNA stability. We also detected Tbc1d24 expression in mouse phalangeal chondrocytes and calvaria, which suggests a role of TBC1D24 in skeletogenesis.

Interpretation: Our findings suggest that mutations in TBC1D24 seem to be an important cause of DOORS syndrome and can cause diverse phenotypes. Thus, individuals with DOORS syndrome without deafness and seizures but with the other features should still be screened for TBC1D24 mutations. More information is needed to understand the cellular roles of TBC1D24 and identify the genes responsible for DOORS phenotypes in individuals who do not have a mutation in TBC1D24.

Funding: US National Institutes of Health, the CIHR (Canada), the NIHR (UK), the Wellcome Trust, the Henry Smith Charity, and Action Medical Research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3895324PMC
http://dx.doi.org/10.1016/S1474-4422(13)70265-5DOI Listing

Publication Analysis

Top Keywords

doors syndrome
28
tbc1d24 mutations
20
sanger sequencing
12
families
11
tbc1d24
11
genetic basis
8
doors
8
syndrome
8
deafness onychodystrophy
8
onychodystrophy osteodystrophy
8

Similar Publications

The efficacy of Bone Marrow Mesenchymal Stem Cell-derived Exosomes (BMSCs-Exo) in addressing the complexities of Polycystic Ovary Syndrome (PCOS) has been explored in a controlled experimental study using a DHEA-induced PCOS model in 6-8-week-old female NMRI mice. This research undertook an in vivo approach with fifteen female murine subjects to investigate the potential of BMSCs-Exo in promoting vascular regeneration and alleviating the adverse effects associated with PCOS. Through a strategic intervention, the study aimed to modulate the pathophysiological markers of oxidative stress and inflammation that are hallmark features of PCOS.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the role of TBC1D24 in cochlear inner hair cells and how its mutation (p.S178L) leads to hearing loss.
  • Researchers created a knockout mouse model to observe the effects of this mutation, which resulted in mild hearing loss and issues with auditory signals.
  • Findings indicate that TBC1D24 is crucial for proper vesicle recycling in hair cell synapses, as the mutation causes accumulation of endosome-like structures and reduced exocytosis in inner hair cells.
View Article and Find Full Text PDF

Interaction between the TBC1D24 TLDc domain and the KIBRA C2 domain is disrupted by two epilepsy-associated TBC1D24 missense variants.

J Biol Chem

September 2024

Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA. Electronic address:

Article Synopsis
  • Mutations in the TBC1D24 gene are linked to various conditions like deafness, epilepsy, and DOORS syndrome, but how these mutations lead to different health issues is still unclear.
  • Researchers conducted a study to identify new protein partners of TBC1D24 and discovered that it interacts with KIBRA, a scaffold protein involved in cognitive functions and the Hippo signaling pathway.
  • Specific mutations in the TLDc domain of TBC1D24 can disrupt its interaction with KIBRA, revealing a potential link between TBC1D24 and epilepsy, suggesting that this interaction is crucial for reducing epilepsy risk.
View Article and Find Full Text PDF

The vacuolar H-ATPase (V-ATPase) is a functionally conserved multimeric complex localized at the membranes of many organelles where its proton-pumping action is required for proper lumen acidification. The V-ATPase complex is composed of several subunits, some of which have been linked to human disease. We and others previously reported pathogenic dominantly acting variants in ATP6V1B2, the gene encoding the V1B2 subunit, as underlying a clinically variable phenotypic spectrum including dominant deafness-onychodystrophy (DDOD) syndrome, Zimmermann-Laband syndrome (ZLS), and deafness, onychodystrophy, osteodystrophy, intellectual disability, and seizures (DOORS) syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!