Ectopic expression of ZmSIMK1 leads to improved drought tolerance and activation of systematic acquired resistance in transgenic tobacco.

J Biotechnol

State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China. Electronic address:

Published: February 2014

The mitogen-activated protein kinase (MAPK) cascades play pivotal roles in diverse signaling pathways related to plant biotic and abiotic stress responses. In this study, a group B MAPK gene in Zea mays, ZmSIMK1, was functionally analyzed. Quantitative real-time PCR (qRT-PCR) analysis indicated that ZmSIMK1 transcript could be induced by drought, salt, Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and certain exogenous signaling molecules. Analysis of the ZmSIMK1 promoter revealed a group of putative cis-acting elements related to drought and defense responses. β-Glucuronidase (GUS) staining produced similar results as qRT-PCR. ZmSIMK1 was mainly localized in the nucleus, and further study indicated that the C-terminal domain (CD) was essential for targeting to the nucleus. Transgenic tobacco accumulated less reactive oxygen species (ROS), had higher levels of antioxidant enzyme activity and osmoregulatory substances and exhibited an increased germination rate compared with wild-type (WT) tobacco under drought stress. ROS-related and drought stress-responsive genes in transgenic tobacco were significantly upregulated compared with the same genes in WT lines under drought stress. Moreover, overexpression of ZmSIMK1 promoted the hypersensitive response (HR) and pathogen-related gene (PR) transcription in addition to triggering systemic acquired resistance (SAR) in tobacco.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2013.11.006DOI Listing

Publication Analysis

Top Keywords

transgenic tobacco
12
acquired resistance
8
drought stress
8
zmsimk1
6
drought
6
tobacco
5
ectopic expression
4
expression zmsimk1
4
zmsimk1 leads
4
leads improved
4

Similar Publications

Effect of transgene on salt tolerance of tobacco.

Transgenic Res

January 2025

Forest Department, College of Forestry, Hebei Agricultural University, Baoding, 071000, China.

To explore the effects of salt-tolerance gene accumulation on salt tolerance in transgenic plant, we used four types of plant expression vector (N27, N28, N29, and N30) carrying mtlD, mtlD + gutD, mtlD + gutD + BADH, mtlD + gutD + BADH + sacB genes respectively, to transform tobacco through Agrobacterium-mediated method. Transgenic lines were identified through polymerase chain reaction (PCR) detection. Transgenic lines and non-transgenic plant (CK) were subjected to 6‰ sodium chloride solution stress; then, fluorescence quantitative PCR (FQ-PCR) and salt tolerance indexes were used to assess characteristics.

View Article and Find Full Text PDF

Light is essential for photosynthesis; however, excess light can increase the accumulation of photoinhibitory reactive oxygen species that reduce photosynthetic efficiency. Plants have evolved photoprotective non-photochemical quenching (NPQ) pathways to dissipate excess light energy. In tobacco and soybean (C plants), overexpression of three NPQ genes, e (VDE), (PsbS), and (ZEP), hereafter VPZ, resulted in faster NPQ induction and relaxation kinetics, and increased crop yields in field conditions.

View Article and Find Full Text PDF

Spider silk, especially dragline silk from golden silk spiders (Trichonephila clavipes), is an excellent natural material with remarkable mechanical properties. Many studies have focused on the use of plants as biofactories for the production of recombinant spider silk. However, the effects of this material on the mechanical properties or physiology of transgenic plants remain poorly understood.

View Article and Find Full Text PDF

Bacterial wilt caused by Ralstonia solanacearum is a devastating disease affecting a great many crops including peanut. The pathogen damages plants via secreting type Ш effector proteins (T3Es) into hosts for pathogenicity. Here, we characterized RipAU was among the most toxic effectors as ΔRipAU completely lost its pathogenicity to peanuts.

View Article and Find Full Text PDF

Background: MicroRNA159 (miR159) is a conserved miRNA found in various plant species. By regulating GAMYB-like transcription factors, miR159 is involved in diverse biological processes. , a significant traditional Chinese orchid, has unique flower shape and elegant fragrance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!