Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Isomaltooligosaccharides (IMOs) are α-(1→6)-linked oligodextrans that show a prebiotic effect on Bifidobacterium spp. This study sought to improve IMO synthesis during lactate fermentation in kimchi by inoculating the kimchi fermentation mix with a starter and sugars; the psychrotrophic Leuconostoc citreum KACC 91035 strain with high dextransucrase activity was used as a starter and sucrose (58 mM) and maltose (56 mM) were added as the donor and acceptor for the glucose-transferring reaction of the dextransucrase, respectively. With the addition of both the starter and the sugars and incubation at 10°C, IMOs were produced in kimchi after 3d. Without the starter, the IMO production rate and maximal concentration in kimchi were 15.05 mM/d and 75.27 mM, respectively, whereas with the starter, the rate and concentration increased to 22.04 mM/d and 110.19 mM, respectively. In addition, the sucrose-maltose mix gave an appropriate level of sweetness by releasing fructose and prevented unfavorable polymer synthesis by IMO production. This result suggests that lactic acid bacteria expressing a highly active glycosyltransferase can be used for the synthesis of beneficial oligosaccharides in various fermented foods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2013.10.027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!