The photodegradation of four parabens including methyl-, ethyl-, propyl-, and butyl-paraben in the presence of Fe(III)-citrate complexes under simulated sunlight was investigated. The degradation of parabens increased with decreasing pH within the range of 5.0-8.0 at the Fe(III)-to-citrate ratio of 10:150 (μM). The addition of low-molecular-weight carboxylic acids showed different effects on the photodegradation of methylparaben. The low-photoreactive carboxylic acids inhibited the photodegradation of methylparaben in the order of formic acid>succinic acid>acetic acid>malonic acid. In contrast, oxalic acid enhanced the photodegradation and exhibited appreciable synergistic effect with Fe(III)-citrate at concentration higher than 500 μM. Up to 99.0% of substrate was degraded after 30 min at pH6.0 in the Fe(III)-citrate-oxalate system. The various fractions of fulvic acid inhibited the photodegradation of methylparaben. The inhibition increased with increasing nominal molecular weight of fractionated fulvic acid. Moreover, the photodegradation of methylparaben was inhibited in natural waters in the order of Liangzi Lake
Download full-text PDF
Source
http://dx.doi.org/10.1016/j.scitotenv.2013.11.005 DOI Listing Publication Analysis
Top Keywords
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!