The innate system's recognition of non-self and danger signals is mediated by a limited number of germ-line encoded pattern recognition receptors (PRRs) that recognize pathogen associated molecular patterns (PAMPs). Toll-like receptors (TLRs) are single, non-catalytic, membrane-spanning PRRs present in invertebrates and vertebrates. They act by specifically recognizing PAMPs of a variety of microbes and activate signaling cascades to induce innate immunity. A large number of TLRs have been identified in various aquatic animals of phyla Cnidaria, Annelida, Mollusca, Arthropoda, Echinodermata and Chordata. TLRs of aquatic and warm-blooded higher animals exhibit some distinctive features due to their diverse evolutionary lineages. However, majority of them share conserve signaling pathways in pathogen recognition and innate immunity. Functional analysis of novel TLRs in aquatic animals is very important in understanding the comparative immunology between warm-blooded and aquatic animals. In additions to innate immunity, recent reports have highlighted the additional roles of TLRs in adaptive immunity. Therefore, vaccines against many critical diseases of aquatic animals may be made more effective by supplementing TLR activators which will stimulate dendritic cells. This article describes updated information of TLRs in aquatic animals and their structural and functional relationship with warm-blooded animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.imlet.2013.11.013 | DOI Listing |
Sci Adv
January 2025
Québec Océan, Département de biologie, Université Laval, Québec, Canada.
Biodiversity encompasses not only species diversity but also the complex interactions that drive ecological dynamics and ecosystem functioning. Still, these critical interactions remain overwhelmingly overlooked in environmental management. In this study, we introduce an ecosystem-based approach that assesses the cumulative effects of climate change and human activities on species in the St.
View Article and Find Full Text PDFSci Adv
January 2025
School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK.
Whether metazoan diversification during the Cambrian Radiation was driven by increased marine oxygenation remains highly debated. Repeated global oceanic oxygenation events have been inferred during this interval, but the degree of shallow marine oxygenation and its relationship to biodiversification and clade appearance remain uncertain. To resolve this, we interrogate an interval from ~527 to 519 Ma, encompassing multiple proposed global oceanic oxygenation events.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
Aquatic toxicology, as a result of industrial and agrieqcultural effluences, has become a global concern impacting not only the well-being of aquatic organisms but human health as well. The current study evaluated the impact of four toxic trace elements (TTEs) Cadmium (Cd), copper (Cu), lead (Pb), and nickel (Ni) in three organs (liver, gills, and muscles) of five fish species viz, Rita rita, Sperata sarwari, Wallago attu, Mastacembelus armatus, and Cirrhinus mrigala collected from right and left banks of Punjnad headworks during winter, spring, and summer. We investigated the accumulation (mg/kg) of these TTEs in fish in addition to the human health risk assessment.
View Article and Find Full Text PDFMicrob Ecol
January 2025
Conservation Genomics Research Unit and Animal, Environmental and Antique DNA Platform, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy.
With amphibians still holding the record as the most threatened class of terrestrial vertebrates, their skin microbiota has been shown to play a relevant role in their survival in a fast-changing world. Yet little is known about how abiotic factors associated with different aquatic habitats impact these skin microorganisms. Here we chose the yellow-bellied toad (Bombina variegata), a small anuran that colonizes a wide range of wetland habitats, to investigate how the diversity and composition of both its bacterial and fungal skin communities vary across different habitats and with water characteristics (temperature, pH, and dissolved oxygen) of these habitats.
View Article and Find Full Text PDFToxins (Basel)
January 2025
Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia.
Grazing by zooplankton can regulate bloom-forming cyanobacteria but can also transfer toxin-producing cells, as well as toxic metabolites, to the food web. While laboratory investigations have provided extensive knowledge on zooplankton and toxic cyanobacteria interactions, information on zooplankton feeding on toxin-producing cyanobacteria in natural water bodies remains scarce. In this study, we quantified -specific synthase genes from the gut contents of various cladoceran and copepod taxa to assess the in situ crustacean community and taxon-specific ingestion of potentially toxic in Lake Peipsi, a large eutrophic lake in Estonia, Northern Europe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!